Old Myths, New Concerns: the Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold

Cristiano Spadaccio1, Francesco Nappi2, Nawwar Al‐Attar1, Fraser W.H. Sutherland1, Christophe Acar3, Antonio Nenna4, Marcella Trombetta5, Massimo Chello4, Alberto Rainer5
1Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Agamemnon Street Clydebank, Glasgow, G81 4DY, UK
2Cardiac Surgery Centre Cardiologique du Nord de Saint-Denis, Paris, France
3Department of Cardiothoracic Surgery, Hôpital Pitié-Salpétrière, Paris, France
4Department of Cardiovascular Sciences|, University Campus Bio-Medico of Rome, Roma, Italy
5CIR—Laboratory of Tissue Engineering, Università Campus Bio-Medico di Roma, Roma, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Spadaccio, C., Rainer, A., Barbato, R., et al. (2013). The fate of large-diameter Dacron (R) vascular grafts in surgical practice: are we really satisfied? International Journal of Cardiology, 168(5), 5028–5029. doi: 10.1016/j.ijcard.2013.07.165 .

Chlupac, J., Filova, E., & Bacakova, L. (2009). Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res, 58(Suppl 2), S119–139.

Bical, O. M., Heran, J., Thebault, B., et al. (2009). Pseudoaneurysm following Dacron replacement of the ascending aorta. European Journal of Cardio-Thoracic Surgery, 35(3), 536. doi: 10.1016/j.ejcts.2008.12.013 .

Tai, N. R., Salacinski, H. J., Edwards, A., et al. (2000). Compliance properties of conduits used in vascular reconstruction. British Journal of Surgery, 87(11), 1516–1524. doi: 10.1046/j.1365-2168.2000.01566.x .

Moreno, M. J., Ajji, A., Mohebbi-Kalhori, D., et al. (2011). Development of a compliant and cytocompatible micro-fibrous polyethylene terephthalate vascular scaffold. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 97(2), 201–214. doi: 10.1002/jbm.b.31774 .

Stalpaert, G., Heerinckx, J., Ngalikpima, V., et al. (1975). Early thrombosis risks in function of methods of reconstruction (venous bypass, dacron bypass or endarterectomy), within three months. The Journal of Cardiovascular Surgery, 16(4), 390–391.

Ballyk, P. D., Walsh, C., Butany, J., et al. (1998). Compliance mismatch may promote graft-artery intimal hyperplasia by altering suture-line stresses. Journal of Biomechanics, 31(3), 229–237.

Kim, H. B., Choi, Y. H., So, Y. H., et al. (2012). Tissue responses to endovascular stent grafts for saccular abdominal aortic aneurysms in a canine model. Journal of Korean Medical Science, 27(10), 1170–1176. doi: 10.3346/jkms.2012.27.10.1170 .

Tiwari, A., Kidane, A., Salacinski, H., et al. (2003). Improving endothelial cell retention for single stage seeding of prosthetic grafts: use of polymer sequences of arginine-glycine-aspartate. European Journal of Vascular and Endovascular Surgery, 25(4), 325–329. doi: 10.1053/ejvs.2002.1854 .

Singh, C., & Wang, X. (2014). A biomimetic approach for designing stent-graft structures: caterpillar cuticle as design model. Journal of the Mechanical Behavior of Biomedical Materials, 30, 16–29. doi: 10.1016/j.jmbbm.2013.10.014 .

Robicsek, F., & Thubrikar, M. J. (2003). Compliance of aortic root conduit. Annals of Thoracic Surgery, 75(6), 2007.

De Paulis, R., Matteis, G. M., Nardi, P., et al. (2002). Analysis of valve motion after the reimplantation type of valve-sparing procedure (David I) with a new aortic root conduit. Annals of Thoracic Surgery, 74(1), 53–57.

Leuprecht, A., Perktold, K., Prosi, M., et al. (2002). Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. Journal of Biomechanics, 35(2), 225–236.

Baird, R. N., Kidson, I. G., L’Italien, G. J., et al. (1977). Dynamic compliance of arterial grafts. American Journal of Physiology, 233(5), H568–572.

Spadaccio, C., Rainer, A., Barbato, R., et al. (2014). The long-term follow up of large-diameter Dacron (R) vascular grafts in surgical practice: a review. J Cardiovasc Surg (Torino), doi:R37Y9999N00A140185.

Nishida, H., Tabata, M., Fukui, T., et al. (2015). Surgical strategy and outcome for aortic root in patients undergoing repair of acute type A aortic dissection. Ann Thorac Surg. doi: 10.1016/j.athoracsur.2015.10.007 .

Mohammadi, S., Bonnet, N., Leprince, P., et al. (2005). Reoperation for false aneurysm of the ascending aorta after its prosthetic replacement: surgical strategy. Annals of Thoracic Surgery, 79(1), 147–152. Discussion 152.

Bachet, J. E., Termignon, J. L., Dreyfus, G., et al. (1994). Aortic dissection. Prevalence, cause, and results of late reoperations. The Journal of Thoracic and Cardiovascular Surgery, 108(2), 199–205. Discussion 205-196.

Mulder, E. J., van Bockel, J. H., Maas, J., et al. (1998). Morbidity and mortality of reconstructive surgery of noninfected false aneurysms detected long after aortic prosthetic reconstruction. Archives of Surgery, 133(1), 45–49.

Sullivan, K. L., Steiner, R. M., Smullens, S. N., et al. (1988). Pseudoaneurysm of the ascending aorta following cardiac surgery. Chest, 93(1), 138–143.

Troost, E., Gewillig, M., Daenen, W., et al. (2009). Behaviour of polyester grafts in adult patients with repaired coarctation of the aorta. European Heart Journal, 30(9), 1136–1141. doi: 10.1093/eurheartj/ehp054 .

Spadaccio, C., Montagnani, S., Acar, C., et al. (2015). Introducing bioresorbable scaffolds into the show. A potential adjunct to resuscitate Ross procedure. International Journal of Cardiology, 190, 50–52. doi: 10.1016/j.ijcard.2015.04.098 .

Nappi, F., Spadaccio, C., Castaldo, C., et al. (2014). Reinforcement of the pulmonary artery autograft with a polyglactin and polydioxanone mesh in the Ross operation: experimental study in growing lamb. Journal of Heart Valve Disease, 23(2), 145–148.

Takami, Y., Tajima, K., Kato, W., et al. (2012). Long-term size follow-up of knitted Dacron grafts (Gelseal) used in the ascending aorta. Interactive Cardiovascular and Thoracic Surgery, 14(5), 529–531. doi: 10.1093/icvts/ivr086 .

Mattens, E., Engels, P., Hamerlijnck, R., et al. (1999). Gelseal versus Gelweave dacron prosthetic grafts in the descending thoracic aorta: a two-year computed tomography scan follow-up study. Cardiovascular Surgery, 7(4), 432–435.

Berger, K., & Sauvage, L. R. (1981). Late fiber deterioration in Dacron arterial grafts. Annals of Surgery, 193(4), 477–491.

Wilson, S. E., Krug, R., Mueller, G., et al. (1997). Late disruption of Dacron aortic grafts. Annals of Vascular Surgery, 11(4), 383–386.

Han, I., Shigematsu, H., Nunokawa, M., et al. (1994). Nonanastomotic aneurysm formation in a Dacron arterial graft: report of a case. Surgery Today, 24(11), 1007–1010.

Mary, C., Marois, Y., King, M. W., et al. (1997). In vitro and in vivo studies of a polyester arterial prosthesis with a warp-knitted sharkskin structure. Journal of Biomedical Materials Research, 35(4), 459–472. doi: 10.1002/(SICI)1097-4636(19970615)35:4<459::AID-JBM6>3.0.CO;2-G .

Stollwerck, P. L., Kozlowski, B., Sandmann, W., et al. (2011). Long-term dilatation of polyester and expanded polytetrafluoroethylene tube grafts after open repair of infrarenal abdominal aortic aneurysms. Journal of Vascular Surgery, 53(6), 1506–1513. doi: 10.1016/j.jvs.2011.02.028 .

Kelly, R. P., Tunin, R., & Kass, D. A. (1992). Effect of reduced aortic compliance on cardiac efficiency and contractile function of in situ canine left ventricle. Circulation Research, 71(3), 490–502.

Morita, S., Kuboyama, I., Asou, T., et al. (1991). The effect of extraanatomic bypass on aortic input impedance studied in open chest dogs. Should the vascular prosthesis be compliant to unload the left ventricle? Journal of Thoracic and Cardiovascular Surgery, 102(5), 774–783.

Kim, S. Y., Hinkamp, T. J., Jacobs, W. R., et al. (1995). Effect of an inelastic aortic synthetic vascular graft on exercise hemodynamics. Annals of Thoracic Surgery, 59(4), 981–989.

O’Rourke, M. F. (2008). How stiffening of the aorta and elastic arteries leads to compromised coronary flow. Heart, 94(6), 690–691. doi: 10.1136/hrt.2007.134791 .

Vlachopoulos, C., Aznaouridis, K., & Stefanadis, C. (2010). Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. Journal of the American College of Cardiology, 55(13), 1318–1327. doi: 10.1016/j.jacc.2009.10.061 .

Kidher, E., Harling, L., Ashrafian, H., et al. (2014). Aortic stiffness as a marker of cardiac function and myocardial strain in patients undergoing aortic valve replacement. Journal of Cardiothoracic Surgery, 9(1), 102. doi: 10.1186/1749-8090-9-102 .

Maeta, H., & Hori, M. (1985). Effects of a lack of aortic “Windkessel” properties on the left ventricle. Japanese Circulation Journal, 49(2), 232–237.

Mitsui, T., Maeta, H., Fukuda, I., et al. (1986). Left ventricular hypertrophy due to aortic bypass grafting with a long prosthesis. The Journal of Cardiovascular Surgery, 27(2), 201–206.

Morita, S., Asou, T., Kuboyama, I., et al. (2002). Inelastic vascular prosthesis for proximal aorta increases pulsatile arterial load and causes left ventricular hypertrophy in dogs. The Journal of Thoracic and Cardiovascular Surgery, 124(4), 768–774.

Kobayashi, S., Yano, M., Kohno, M., et al. (1996). Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation, 94(12), 3362–3368.

Kass, D. A., Saeki, A., Tunin, R. S., et al. (1996). Adverse influence of systemic vascular stiffening on cardiac dysfunction and adaptation to acute coronary occlusion. Circulation, 93(8), 1533–1541.

Stefanadis, C., Dernellis, J., Vlachopoulos, C., et al. (1997). Aortic function in arterial hypertension determined by pressure-diameter relation: effects of diltiazem. Circulation, 96(6), 1853–1858.

Michaelides, A. P., Tousoulis, D., Fourlas, C. A., et al. (2006). The aortic distensibility alteration is an index of influence of ischemic preconditioning to myocardial performance. International Journal of Cardiology, 113(1), 76–81.

Lakatta, E. G. (1993). Cardiovascular regulatory mechanisms in advanced age. Physiological Reviews, 73(2), 413–467.

Tsioufis, C., Chatzis, D., Dimitriadis, K., et al. (2005). Left ventricular diastolic dysfunction is accompanied by increased aortic stiffness in the early stages of essential hypertension: a TDI approach. Journal of Hypertension, 23(9), 1745–1750.

Robicsek, F., & Thubrikar, M.J. (1999). Role of sinus wall compliance in aortic leaflet function. The American Journal of Cardiology, 84(8), 944–946, A947. doi: 10.1016/s0002-9149(99)00475-0 .

David, T., Armstrong, S., Manlhiot, C., McCrindle, B. W., & Feindel, C. M. (2013). Long-term results of aortic root repair using the reimplantation technique. Journal of Thoracic and Cardiovascular Surgery, 145, S22–25. doi: 10.1016/j.jtcvs.2012.11.07 .

Shrestha, M., Baraki, H., Maeding, I., et al. (2012). Long-term results after aortic valve-sparing operation (David I). European Journal of Cardio-Thoracic Surgery, 41(1), 56–61. doi: 10.1016/j.ejcts.2011.04.012 . discussion 61-52.

Leontyev, S., Trommer, C., Subramanian, S., et al. (2012). The outcome after aortic valve-sparing (David) operation in 179 patients: a single-centre experience. European Journal of Cardio-Thoracic Surgery, 42(2), 261–266. doi: 10.1093/ejcts/ezs011 . discussion 266-267.

Fokin, A. A., Robicsek, F., Cook, J. W., et al. (2004). Morphological changes of the aortic valve leaflets in non-compliant aortic roots: in-vivo experiments. Journal of Heart Valve Disease, 13(3), 444–451.

Zehr, K. J., Orszulak, T. A., Mullany, C. J., et al. (2004). Surgery for aneurysms of the aortic root: a 30-year experience. Circulation, 110(11), 1364–1371. doi: 10.1161/01.CIR.0000141593.05085.87 .

Rama, A., Rubin, S., Bonnet, N., et al. (2007). New technique of aortic root reconstruction with aortic valve annuloplasty in ascending aortic aneurysm. Annals of Thoracic Surgery, 83(5), 1908–1910.

Bellhouse, B. J., & Bellhouse, F. H. (1968). Mechanism of closure of the aortic valve. Nature, 217(5123), 86–87.

Fries, R., Graeter, T., Aicher, D., et al. (2006). In vitro comparison of aortic valve movement after valve-preserving aortic replacement. The Journal of Thoracic and Cardiovascular Surgery, 132(1), 32–37.

Graeter, T. P., Fries, R., Aicher, D., et al. (2006). In-vitro comparison of aortic valve hemodynamics between aortic root remodeling and aortic valve reimplantation. Journal of Heart Valve Disease, 15(3), 329–335.

De Paulis, R., Tomai, F., Bertoldo, F., et al. (2004). Coronary flow characteristics after a Bentall procedure with or without sinuses of Valsalva. European Journal of Cardio-Thoracic Surgery, 26(1), 66–72. doi: 10.1016/j.ejcts.2004.04.031 .

Bottio, T., Buratto, E., Dal Lin, C., et al. (2012). Aortic valve hydrodynamics: considerations on the absence of sinuses of Valsalva. Journal of Heart Valve Disease, 21(6), 718–723.

Robicsek, F., Thubrikar, M. J., & Fokin, A. A. (2002). Cause of degenerative disease of the trileaflet aortic valve: review of subject and presentation of a new theory. Annals of Thoracic Surgery, 73(4), 1346–1354.

David, T. E. (2012). Aortic valve sparing operations: a review. Korean Journal Thoracic Cardiovascular Surgery, 45(4), 205–212. doi: 10.5090/kjtcs.2012.45.4.205 .

Schmitto, J. D., Mokashi, S. A., Chen, F. Y., et al. (2010). Aortic valve-sparing operations: state of the art. Current Opinion in Cardiology, 25(2), 102–106. doi: 10.1097/HCO.0b013e328335ffc8 .

Leyh, R. G., Schmidtke, C., Sievers, H. H., et al. (1999). Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation, 100(21), 2153–2160.

Aybek, T., Sotiriou, M., Wohleke, T., et al. (2005). Valve opening and closing dynamics after different aortic valve-sparing operations. Journal of Heart Valve Disease, 14(1), 114–120.

De Paulis, R., De Matteis, G. M., Nardi, P., et al. (2001). Opening and closing characteristics of the aortic valve after valve-sparing procedures using a new aortic root conduit. Annals of Thoracic Surgery, 72(2), 487–494.

Pisani, G., Scaffa, R., Ieropoli, O., et al. (2013). Role of the sinuses of Valsalva on the opening of the aortic valve. Journal of Thoracic and Cardiovascular Surgery, 145(4), 999–1003. doi: 10.1016/j.jtcvs.2012.03.060 .

Schoenhoff, F. S., Loupatatzis, C., Immer, F. F., et al. (2009). The role of the sinuses of Valsalva in aortic root flow dynamics and aortic root surgery: evaluation by magnetic resonance imaging. Journal of Heart Valve Disease, 18(4), 380–385.

Bauernschmitt, R., Schulz, S., Schwarzhaupt, A., et al. (1999). Simulation of arterial hemodynamics after partial prosthetic replacement of the aorta. Annals of Thoracic Surgery, 67(3), 676–682.

Spadaccio, C., Chello, M., Trombetta, M., et al. (2009). Drug releasing systems in cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 13(3), 422–439. doi: 10.1111/j.1582-4934.2008.00532.x .

Centola, M., Rainer, A., Spadaccio, C., et al. (2010). Combining electrospinning and fused deposition modeling for the fabrication of a hybrid vascular graft. Biofabrication, 2(1), 014102. doi: 10.1088/1758-5082/2/1/014102 .

Kumar, V. A., Caves, J. M., Haller, C. A., et al. (2013). Acellular vascular grafts generated from collagen and elastin analogs. Acta Biomaterialia, 9(9), 8067–8074. doi: 10.1016/j.actbio.2013.05.024 .

Marelli, B., Achilli, M., Alessandrino, A., et al. (2012). Collagen-reinforced electrospun silk fibroin tubular construct as small calibre vascular graft. Macromolecular Bioscience, 12(11), 1566–1574. doi: 10.1002/mabi.201200195 .

Nagiah, N., Johnson, R., Anderson, R., et al. (2015). Highly compliant vascular grafts with gelatin-sheathed coaxially structured nanofibers. Langmuir, 31(47), 12993–13002. doi: 10.1021/acs.langmuir.5b03177 .

Huling, J., Ko, I.K., Atala, A., et al. (2016). Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Acta Biomaterialia. doi: 10.1016/j.actbio.2016.01.005 .

Lu, T., Li, Y., & Chen, T. (2013). Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International Journal of Nanomedicine, 8, 337–350. doi: 10.2147/IJN.S38635 .

Rocco, K. A., Maxfield, M. W., Best, C. A., et al. (2014). In vivo applications of electrospun tissue-engineered vascular grafts: a review. Tissue Engineering. Part B, Reviews, 20(6), 628–640. doi: 10.1089/ten.TEB.2014.0123 .

Bagnasco, D. S., Ballarin, F. M., Cymberknop, L. J., et al. (2014). Elasticity assessment of electrospun nanofibrous vascular grafts: a comparison with femoral ovine arteries. Materials Science & Engineering, C: Materials for Biological Applications, 45, 446–454. doi: 10.1016/j.msec.2014.09.016 .

Spadaccio, C., Rainer, A., Centola, M., et al. (2010). Heparin-releasing scaffold for stem cells: a differentiating device for vascular aims. Regenerative Medicine, 5(4), 645–657. doi: 10.2217/rme.10.25 .

Coogan, J. S., Chan, F. P., Taylor, C. A., et al. (2011). Computational fluid dynamic simulations of aortic coarctation comparing the effects of surgical- and stent-based treatments on aortic compliance and ventricular workload. Catheterization and Cardiovascular Interventions, 77(5), 680–691. doi: 10.1002/ccd.22878 .

Coogan, J. S., Humphrey, J. D., & Figueroa, C. A. (2013). Computational simulations of hemodynamic changes within thoracic, coronary, and cerebral arteries following early wall remodeling in response to distal aortic coarctation. Biomechanics and Modeling in Mechanobiology, 12(1), 79–93. doi: 10.1007/s10237-012-0383-x .

Tse, K. M., Chang, R., Lee, H. P., et al. (2013). A computational fluid dynamics study on geometrical influence of the aorta on haemodynamics. European Journal of Cardio-Thoracic Surgery, 43(4), 829–838. doi: 10.1093/ejcts/ezs388 .

Tse, K. M., Chiu, P., Lee, H. P., et al. (2011). Investigation of hemodynamics in the development of dissecting aneurysm within patient-specific dissecting aneurismal aortas using computational fluid dynamics (CFD) simulations. Journal of Biomechanics, 44(5), 827–836. doi: 10.1016/j.jbiomech.2010.12.014 .

Kidher, E., Cheng, Z., Jarral, O. A., et al. (2014). In-vivo assessment of the morphology and hemodynamic functions of the BioValsalva composite valve-conduit graft using cardiac magnetic resonance imaging and computational modelling technology. Journal of Cardiothoracic Surgery, 9, 193. doi: 10.1186/s13019-014-0193-6 .

Cheng, Z., Kidher, E., Jarral, O. A., et al. (2016). Assessment of hemodynamic conditions in the aorta following root replacement with composite valve-conduit graft. Annals of Biomedical Engineering, 44(5), 1392–1404. doi: 10.1007/s10439-015-1453-x .

Heim, L., Poole, R. J., Warwick, R., et al. (2013). The concept of aortic replacement based on computational fluid dynamic analysis: patient-directed aortic replacement. Interactive Cardiovascular and Thoracic Surgery, 16(5), 583–588. doi: 10.1093/icvts/ivt031 .