Oil price volatility and macroeconomic fundamentals: A regime switching GARCH-MIDAS model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alquist, 2010, What do we learn from the price of crude oil futures?, J. Appl. Econometrics, 25, 539, 10.1002/jae.1159
Asgharian, 2015, Macro-finance determinants of the long-run stock–bond correlation: The DCC-MIDAS specification, J. Financ. Econom., nbv025
Avramov, 2002, Stock return predictability and model uncertainty, J. Financ. Econ., 64, 423, 10.1016/S0304-405X(02)00131-9
Baumeister, 2012, Real-time forecasts of the real price of oil, J. Bus. Econom. Statist., 30, 326, 10.1080/07350015.2011.648859
Baumeister, 2016, Understanding the decline in the price of oil since June 2014, J. Assoc. Environ. Resour. Econom., 3, 131
Beltratti, 2006, Breaks and persistency: macroeconomic causes of stock market volatility, J. Econometrics, 131, 151, 10.1016/j.jeconom.2005.01.007
Boffelli, 2015, High-and low-frequency correlations in European government bond spreads and their macroeconomic drivers, J. Financ. Econom., nbv023
Bollerslev, 1986, Generalized autoregressive conditional heteroskedasticity, J. Econometrics, 31, 307, 10.1016/0304-4076(86)90063-1
Bollerslev, 1992, Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances, Econometric Rev., 11, 143, 10.1080/07474939208800229
Cai, 1994, A Markov model of switching-regime ARCH, J. Bus. Econom. Statist., 12, 309, 10.1080/07350015.1994.10524546
Chan, 2016, Modeling energy price dynamics: GARCH versus stochastic volatility, Energy Econ., 54, 182, 10.1016/j.eneco.2015.12.003
Chen, 2010, Can exchange rates forecast commodity prices?, J. Econom., 125, 1145
Claeskens, 2016, The forecast combination puzzle: A simple theoretical explanation, Int. J. Forecast., 32, 754, 10.1016/j.ijforecast.2015.12.005
Colacito, 2011, A component model for dynamic correlations, J. Econometrics, 164, 45, 10.1016/j.jeconom.2011.02.013
Conrad, 2015, Anticipating long-term stock market volatility, J. Appl. Econometrics, 30, 1090, 10.1002/jae.2404
Conrad, 2015, The variance risk premium and fundamental uncertainty, Econom. Lett., 132, 56, 10.1016/j.econlet.2015.04.006
Conrad, 2014, On the macroeconomic determinants of long-term volatilities and correlations in US stock and crude oil markets, J. Empir. Finance, 29, 26, 10.1016/j.jempfin.2014.03.009
Diebold, 1995, Comparing predictive accuracy, J. Bus. Econom. Statist., 13, 253, 10.1080/07350015.1995.10524599
Elder, 2010, Oil price uncertainty, J. Money Credit Bank., 42, 1137, 10.1111/j.1538-4616.2010.00323.x
Engle, 1982, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, J. Econom. Soc., 987
Engle, 2013, Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95, 776, 10.1162/REST_a_00300
Engle, 2008, The spline-GARCH model for low-frequency volatility and its global macroeconomic causes, Rev. Financ. Stud., 21, 1187, 10.1093/rfs/hhn004
Fama, 1970, Multiperiod consumption-investment decisions, Amer. Econ. Rev., 60, 163
Flannery, 1992
Ghysels, 2004, The MIDAS touch: Mixed data sampling regression models, Finance
Graefe, 2014, Combining forecasts: An application to elections, Int. J. Forecast., 30, 43, 10.1016/j.ijforecast.2013.02.005
Gray, 1996, Modeling the conditional distribution of interest rates as a regime-switching process, J. Financ. Econ., 42, 27, 10.1016/0304-405X(96)00875-6
Guérin, 2013, Markov-switching MIDAS models, J. Bus. Econom. Statist., 31, 45, 10.1080/07350015.2012.727721
Hamilton, 1989, A new approach to the economic analysis of nonstationary time series and the business cycle, J. Econom. Soc., 357
Hamilton, 1994
Hamilton, J.D., 2009. Causes and consequences of the oil shock of 2007–08. Tech. rep., National Bureau of Economic Research.
Hamilton, 1994, Autoregressive conditional heteroskedasticity and changes in regime, J. Econometrics, 64, 307, 10.1016/0304-4076(94)90067-1
Hansen, 1992, The likelihood ratio test under nonstandard conditions: testing the Markov switching model of GNP, J. Appl. Econometrics, 7, S61, 10.1002/jae.3950070506
Haugom, 2014, Forecasting volatility of the US oil market, J. Banking Finance, 47, 1, 10.1016/j.jbankfin.2014.05.026
Kilian, 2009, Not all oil price shocks are alike: Disentangling demand and supply shocks in the crude oil market, Amer. Econ. Rev., 99, 1053, 10.1257/aer.99.3.1053
Kilian, 2009, The impact of oil price shocks on the US stock market, Internat. Econom. Rev., 50, 1267, 10.1111/j.1468-2354.2009.00568.x
Kim, 2008, Estimation of Markov regime-switching regression models with endogenous switching, J. Econometrics, 143, 263, 10.1016/j.jeconom.2007.10.002
Lamoureux, 1990, Persistence in variance, structural change, and the GARCH model, J. Bus. Econom. Statist., 8, 225, 10.1080/07350015.1990.10509794
Marcucci, 2005, Forecasting stock market volatility with regime-switching GARCH models, Stud. Nonlinear Dyn. Econom., 9
Miller, 2009, Crude oil and stock markets: Stability, instability, and bubbles, Energy Econ., 31, 559, 10.1016/j.eneco.2009.01.009
Nomikos, 2011, Forecasting petroleum futures markets volatility: The role of regimes and market conditions, Energy Econ., 33, 321, 10.1016/j.eneco.2010.11.013
Patton, 2011, Volatility forecast comparison using imperfect volatility proxies, J. Econometrics, 160, 246, 10.1016/j.jeconom.2010.03.034
Paye, 2012, Déjà vol: Predictive regressions for aggregate stock market volatility using macroeconomic variables, J. Financ. Econ., 106, 527, 10.1016/j.jfineco.2012.06.005
Sadorsky, 2006, Modeling and forecasting petroleum futures volatility, Energy Econ., 28, 467, 10.1016/j.eneco.2006.04.005
Schwert, 1989, Why does stock market volatility change over time?, J. Finance, 44, 1115, 10.1111/j.1540-6261.1989.tb02647.x
Sévi, 2014, Forecasting the volatility of crude oil futures using intraday data, European J. Oper. Res., 235, 643, 10.1016/j.ejor.2014.01.019
Sheppard, K., 2007. Financial econometrics mfe matlab notes.
Smith, 2009, A simple explanation of the forecast combination puzzle, Oxford Bull. Econ. Stat., 71, 331, 10.1111/j.1468-0084.2008.00541.x
Tabak, 2007, Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility, Energy Econ., 29, 28, 10.1016/j.eneco.2006.06.007
Wang, F., Ghysels, E., 2008. Statistical inference for volatility component models. Available At SSRN: https://ssrn.com/abstract=1273381.
Wang, 2010, Is WTI crude oil market becoming weakly efficient over time?: New evidence from multiscale analysis based on detrended fluctuation analysis, Energy Econ., 32, 987, 10.1016/j.eneco.2009.12.001
Wang, 2012, Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?, Energy Econ., 34, 2167, 10.1016/j.eneco.2012.03.010
Wang, 2016, Forecasting crude oil market volatility: A Markov switching multifractal volatility approach, Int. J. Forecast., 32, 1, 10.1016/j.ijforecast.2015.02.006
Welch, 2008, A comprehensive look at the empirical performance of equity premium prediction, Rev. Financ. Stud., 21, 1455, 10.1093/rfs/hhm014
Wooldridge, 1994, Estimation and inference for dependent processes, Handb. Econom., 4, 2639