Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles
Tóm tắt
Từ khóa
Tài liệu tham khảo
Torre, L. A., Siegel, R. L., Ward, E. M. & Jemal, A. Global cancer incidence and mortality rates and trends –An update. Cancer Epidemiol. Biomarkers Prev. 25, 16–27 (2016).
World Health Organization (WHO). Cancer, http://www.who.int/mediacentre/factsheets/fs297/en/ (2018).
American Cancer Association. 10 Must-Know 2015 Global Cancer Facts, https://www.cancer.org/latest-news/10-must-know-2015-global-cancer-facts.html (2015).
American Society of Clinical Oncology. Understanding Hereditary Cancer, Syndromes. https://www.asco.org/practice-guidelines/cancer-care-initiatives/genetics-toolkit/understanding-hereditary-cancer (2018).
Nan, L. et al. A genetic susceptibility study of lung cancer risk potentially associated with polycyclic aromatic hydrocarbon inhalation exposure. Biomed. Environ. Sci. 30, 772–776 (2017).
Shen, H. et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility. Sci. Rep. 4, 6561, https://doi.org/10.1038/srep06561 (2014).
Wang, J. et al. Inhalation cancer risk associated with exposure to complex polycyclic aromatic hydrocarbon mixtures in an electronic waste and urban area in South China. Environ. Sci. Technol. 46, 9745–9752 (2012).
International Energy Agency. World Energy Outlook: Energy and Air Pollution, https://www.iea.org/publications/freepublications/publication/WEO2017SpecialReport_EnergyAccessOutlook.pdf (2017).
Hayakawa, K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chem. Pharm. Bull. 64, 83–94 (2016).
Stiborová, M. et al. Molecular mechanism of genotoxicity of the environmental pollutant 3-nitrobenzanthrone. Biomed. Pap. Med. Fac. Univ. Palack Olomouc Czechoslov. 149, 191–197 (2005).
Kameda, T. et al. Mineral dust aerosol promote the formation of toxic nitropolycyclic aromatic compounds. Sci. Rep. 6, 24427, https://doi.org/10.1038/srep24427 (2016).
Ostojić, B. D., Stanković, B. & Dordević, D. S. The molecular properties of nitrobenzanthrone isomers and their mutagenic activities. Chemosphere 104, 228–236 (2014).
IARC. International Agency for Research on Cancer. Diesel and gasoline engine exhausts and some nitroarenes, IARC monographs on the evaluation of carcinogenic risks to humans, 105 (World Health Organization, 2014).
Tomaz, S. et al. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 565, 1071–1083 (2016).
Tomaz, S.; et al. Sources and atmospheric chemistry of oxy- and nitro-PAHs in the ambient air of Grenoble (France). Atmos. Environ. 161, 144–154 (2017).
Zhang, J. et al. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmos. Environ. 173, 256–264 (2018).
Arlt, V. M. 3-Nitrobenzanthrone, a potential human cancer hazard in diesel exhaust and urban air pollution: a review of the evidence. Mutagenesis 20, 399–410 (2005).
Rossner, P. et al. Toxic effects of the major components of diesel exhaust in human alveolar basal epithelial cells (A549). Int. J. Mol. Sci. 17, 1393 (2016).
Stec, A. A. et al. Occupational exposure to polycyclic aromatic hydrocarbons and elevated cancer incidence in firefighters. Sci. Rep. 8, 2476, https://doi.org/10.1038/s41598-018-20616-6 (2018).
Dahlmann, H. A. Molecular mechanism of 3-nitrobenzanthrone mutagenesis elucidated. Chem. Res. Toxicol. 26, 1029–1030 (2013).
Inazu, K. et al. Atmospheric occurrence of 2-nitrobenzanthrone associated with airborne particles in Central Tokyo. Polycyl. Aromat. Compd. 28, 37–41 (2008).
Liu, Z., Li, P., Bian, W., Yu, J. & Zhan, J. Revealing the role of oxidation state in interaction between nitro/amino-derived particulate matter and blood proteins. Sci. Rep. 6, 25909, https://doi.org/10.1038/srep25909 (2016).
Arlt, V. M. et al. Mutagenicity and DNA adduct formation by the urban air pollutant 2-nitrobenzanthrone. Toxicol. Sci. 98, 445–457 (2007).
Arlt, V. M., Phillips, D. H. & Reynisson, J. Theoretical investigations on the formation of nitrobenzanthrone-DNA adducts. Org. Biomol. Chem. 9, 6100–6110 (2011).
Phousongphouang, P. T., Grosovsky, A. J., Eastmond, D. A., Covarrubias, M. & Arey, J. The genotoxicity of 3-nitrobenzanthrone and the nitropyrene lactones in human lymphoblasts. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 472, 93–103 (2000).
Phousongphouang, P. T. & Arey, J. Sources of the atmospheric contaminants, 2-nitrobenzanthrone and 3-nitrobenzanthrone. Atmos. Environ. 37, 3189–3199 (2003).
Stiborová, M. et al. Mechanisms of the different DNA adduct forming potentials of the urban air pollutants 2-nitrobenzanthrone and carcinogenic 3-nitrobenzanthrone. Chem. Res. Toxicol. 23, 1192–1201 (2010).
Taga, R. et al. Direct-acting mutagenicity of extracts of coal burning-derived particulates and contribution of nitropolycyclic aromatic hydrocarbons. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 581, 91–95 (2005).
Takamura-Enya, T., Suzuki, H. & Hisamatsu, Y. Mutagenic activities and physicochemical properties of selected nitrobenzanthrones. Mutagenesis 21, 399–404 (2006).
Kameda, T., Asano, K., Bandow, H. & Hayakawa, K. Estimation of Rate Constants for Gas-Phase Reactions of Chrysene, Benz[a]anthracene, and Benzanthrone with OH and NO3 Radicals via a Relative Rate Method in CCl4 Liquid Phase-System. Polycycl. Aromat. Compd 37, 101–105 (2017).
Feilberg, A., Ohura, T., Nielsen, T., Poulsen, M. W. B. & Amagai, T. Occurrence and photostability of 3-nitrobenzanthrone associated with atmospheric particles. Atmos. Environ. 36, 3591–3600 (2002).
Tang, N. et al. Atmospheric behaviors of polycyclic aromatic hydrocarbons at a Japanese remote background site, Noto peninsula, from 2004 to 2014. Atmos. Environ. 120, 144–151 (2015).
Linhart, I. et al. Carcinogenic 3-nitrobenzanthrone but not 2-nitrobenzanthrone is metabolised to an unusual mercapturic acid in rats. Toxicol. Lett. 208, 246–253 (2012).
Nagy, E., Adachi, S., Takamura-Enya, T., Zeisig, M. & Möller, L. DNA adduct formation and oxidative stress from the carcinogenic urban air pollutant 3-nitrobenzanthrone and its isomer 2-nitrobenzanthrone, in vitro and in vivo. Mutagenesis 22, 135–145 (2007).
Oya, E. et al. DNA damage and DNA damage response in human bronchial epithelial BEAS-2B cells following exposure to 2-nitrobenzanthrone and 3-nitrobenzanthrone: role in apoptosis. Mutagenesis 26, 697–708 (2011).
Enya, T. 3-Nitrobenzanthrone, a Powerful Bacterial Mutagen and Suspected Human Carcinogen Found in Diesel Exhaust and Airborne Particulates. Environ. Sci. Technol. 31, 2772–2776 (1997).
Tang, N. et al. Determination of Atmospheric nitrobenzanthrones by high-performance liquid chromatography with chemiluminescence detection. Anal. Chem. 20, 119–123 (2004).
Kameda, T., Takenaka, N., Bandow, H., Inazu, K. & Hisamatsu, Y. Determination of atmospheric nitro-polycyclic aromatic hydrocarbons and their precursors at a heavy traffic roadside and at a residential area in Osaka, Japan. Polycycl. Aromat. Compd. 24, 657–666 (2004).
da Costa, G. G. et al. Quantification of 3-nitrobenzanthrone-DNA adducts using online column-switching HPLC-electrospray tandem mass spectrometry. Chem. Res. Toxicol. 22, 1860–1868 (2009).
Hasei, T., Nakanishi, H., Toda, Y. & Watanabe, T. Development of a two-dimensional high-performance liquid chromatography system coupled with on-line reduction as a new efficient analytical method of 3-nitrobenzanthrone, a potential human carcinogen. J. Chromatogr. A 1253, 52–57 (2012).
Murahashi, T. Determination of mutagenic 3-nitrobenzanthrone in diesel exhaust particulate matter by three-dimensional high-performance liquid chromatography. Analyst 128, 42–45 (2003).
Murahashi, T., Iwanaga, E., Watanabe, T. & Hirayama, T. Determination of the mutagen 3-nitrobenzanthrone in rainwater collected in Kyoto, Japan. J. Heal. Sci. 49, 386–390 (2003).
Hayakawa, K. et al. Comparison of Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in airborne and automobile exhaust particulates. Polycycl. Aromat. Compd. 20, 179–190 (2000).
Santos, A. G. et al. A simple, comprehensive, and miniaturized solvent extraction method for determination of particulate-phase polycyclic aromatic compounds in air. J. Chromatogr. A 1435, 6–17 (2016).
Albinet, A., Leoz-Garziandia, E., Budzinski, H. & Villenave, E. Polycyclic aromatic hydrocarbons (PAHs), nitrated PAHs and oxygenated PAHs in ambient air of the Marseilles area (South of France): Concentrations and sources. Sci. Total Environ. 384, 280–292 (2007).
Harrison, R. M. et al. Relationship of polycyclic aromatic hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. Sci. Total Environ. 572, 1175–1183 (2016).
Keyte, I. J., Albinet, A. & Harrison, R. M. On-road traffic emissions of polycyclic aromatic hydrocarbons and their oxy- and nitro- derivative compounds measured in road tunnel environments. Sci. Total Environ. 566–567, 1131–1142 (2016).
Arey, J. et al. The formation of nitro-PAH from the gas-phase reactions of fluoranthene and pyrene with the OH radical in the presence of NOx. Atmos. Environ. 20, 2339–2345 (1986).
Atkinson, R., Arey, J., Zielinska, B. & Aschmann, S. M. Kinetics and nitro‐products of the gas‐phase OH and NO3 radical‐initiated reactions of naphthalene‐d8, Fluoranthene‐d10, and pyrene. Int. J. Chem. Kinet. 22, 999–1014 (1990).
Atkinson, R. & Arey, J. Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: Formation of atmospheric mutagens. Environ. Health Perspect. 102, 117–126 (1994).
Nielsen, T. 1984. Reactivity of Polycyclic Aromatic Hydrocarbons towards Nitrating Species. Environ. Sci. Technol. 18, 157–163 (1984).
Ciccioli, P. et al. Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J. Geophys. Res. 101, 19567 (1996).
Abbas, I. et al. Polycyclic aromatic hydrocarbon derivatives in airborne particulate matter: sources, analysis and toxicity. Environ. Chem. Lett. 16, 439–476 (2018).
Murata, M. et al. Carcinogenic 3-nitrobenzanthrone induces oxidative damage to isolated and cellular DNA. Free Radic. Biol. Med. 40, 1242–1249 (2006).
Andersson, J. T. & Achten, C. Time to say goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for environmental purposes. Polycycl. Aromat. Compd. 35, 330–354 (2015).
Samburova, V., Zielinska, B. & Khlystov, A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 5, 17 (2017).
Alves, C. A. et al. Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Sci. Total Environ. 595, 494–504 (2017).
Bandowe, B. A. M. et al. PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: Seasonal variation, sources and cancer risk assessment. Sci. Total Environ. 473–474, 77–87 (2014).
Wang, J. et al. PM2.5-bound polycyclic aromatic hydrocarbons (PAHs), oxygenated-pahs and phthalate esters (PAEs) inside and outside middle school classrooms in Xi’an, China: Concentration, characteristics and health risk assessment. Aerosol Air Qual. Res. 17, 1811–1824 (2017).
Nascimento, M. M., da Rocha, G. O. & de Andrade, J. B. Pesticides in fine airborne particles: From a green analysis method to atmospheric characterization and risk assessment. Sci. Rep. 7, 2267, https://doi.org/10.1038/s41598-017-02518-1 (2017).
Mkoma, S. L. et al. Major ions in PM2.5 and PM10 released from buses: the use of diesel/biodiesel fuels under real conditions. Fuel 115, 109–117 (2014).
Rodrigues, M. C. et al. Acetaldehyde and formaldehyde concentrations from sites impacted by heavy-duty diesel vehicles and their correlation with the fuel composition: diesel and diesel/biodiesel blends. Fuel 92, 258–263 (2012).
Pereira, P. A. et al. Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil. Atmos. Environ. 41, 7837–7850 (2007).
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull. Amer. Meteor. Soc. 96, 2059–2077 (2015).
Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Software 95, 210–228 (2017).
Schneider, I. L. et al. FTIR analysis and evaluation of carcinogenic and mutagenic risks of nitro-polycyclic aromatic hydrocarbons in PM1.0. Sci. Total Environ. 541, 1151–1160 (2016).
Collins, J. F., Brown, J. P., Alexeeff, G. V. & Salmon, A. G. Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul. Toxicol. Pharmacol. 28, 45–54 (1998).
Nisbet, I. C. T. & LaGoy, P. K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharmacol. 16, 290–300 (1992).
United States Environmental Protection Agency. Exposure Factors Handbook: 2011 Edition. U.S., 1–1466 (Environ. Prot. Agency EPA/600/R-, EPA/600/R-090/052F, 2011).
United States Environmental Protection Agency. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual (HHEM). Part E. Supplemental guidance for dermal risk assessment. Risk assessment guidance for superfund (RAGS). Volume I. Human health evaluation manual, 1–156. doi: EPA/540/1-89/002 (Environ. Prot. Agency, 2004).
Office of Environmental Health Hazard Assessment. Chemical-specific summaries of the information used to derive unit risk and cancer potency values. Appendix B, http://www.oehha.ca.gov/hot_spots/tsd052909.html (2011).