Occurrence and quantification of Anelloviruses and Herpesviruses in gingival tissue in Chinese Shanghai sub-population

BMC Oral Health - Tập 20 - Trang 1-9 - 2020
Tian Yu1,2,3, Shaokun Pan4, Yu Zhang1,2,3, Jun Pei1,2,3, Jing Liu5, Youhua Xie5, Xiping Feng1,2,3
1Department of Preventive Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
2National Clinical Research Center for Oral Diseases, Shanghai, China
3Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
4National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
5Key Lab of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai, China

Tóm tắt

Herpesviruses and bacteria and their interplay have long been believed to play important roles in the pathogenesis of periodontitis, but other microbial entities in the oral environment might also be involved. Anelloviruses are commonly detected in human, including in oral samples. The aim of the present study was to explore the occurrence and co-occurrence of human cytomegalovirus (HCMV), Epstein–Barr virus (EBV), and human anelloviruses (HTTVs) in gingival tissue samples collected from participants recruited in Shanghai, China. Gingival tissues were collected from 159 participants (57 with aggressive periodontitis (AP), 59 with chronic periodontitis (CP) and 43 with healthy periodontal status). The presence of HCMV, EBV, torque teno virus (TTV), torque teno mini virus (TTMV) and torque teno midi virus (TTMDV) DNA was detected by nested-PCR. The virus loads were quantified by real-time PCR. The detection rates of EBV, TTV, TTMV and TTMDV were significantly higher in the AP and CP groups compared to the healthy group (all P < 0.01). A statistically significant association was found between EBV, TTV and TTMV virus load and periodontitis (all P < 0.05). Participants infected with EBV showed significantly higher infection rates and higher virus loads of TTV and TTMV than the EBV-negative group (all P < 0.05). The coexistence rates of EBV and anelloviruses and the coexistence of three HTTVs were significantly higher in AP and CP groups (all P < 0.01). Collectively, results obtained in this study suggest that HTTVs and the coexistence of EBV and HTTVs in particular, may be associated with periodontitis. Possible mechanisms of the interaction between herpesviruses and anelloviruses in the context of periodontitis require further investigation.

Tài liệu tham khảo

Sun HY, Jiang H, Du MQ, Wang X, Feng XP, Hu Y, et al. The prevalence and associated factors of periodontal disease among 35 to 44-year-old Chinese adults in the 4th National Oral Health Survey. Chin J Dent Res. 2018;21(4):241–7. Chen X, Ye W, Zhan JY, Wang X, Tai BJ, Hu Y, et al. Periodontal status of Chinese adolescents: findings from the 4th National Oral Health Survey. Chin J Dent Res. 2018;21(3):195–203. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809–20. Feng Z, Weinberg A. Role of bacteria in health and disease of periodontal tissues. Periodontol. 2006;40:50–76. Edlund A, Santiago-Rodriguez TM, Boehm TK, Pride DT. Bacteriophage and their potential roles in the human oral cavity. J Oral Microbiol. 2015;7:27423. Slots J. Herpesvirus periodontitis: infection beyond biofilm. J Calif Dent Assoc. 2011;39(6):393–9. Rotundo R, Maggi F, Nieri M, Muzzi L, Bendinelli M, Prato GP. TT virus infection of periodontal tissues: a controlled clinical and laboratory pilot study. J Periodontol. 2004;75(9):1216–20. Chen C, Feng P, Slots J. Herpesvirus-bacteria synergistic interaction in periodontitis. Periodontol. 2020;82(1):42–64. Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol. 2015;69(1):28–45. Botero JE, Rodríguez-Medina C, Jaramillo-Echeverry A, Contreras A. Association between human cytomegalovirus and periodontitis: a systematic review and meta-analysis. J Periodontal Res. 2020. https://doi.org/10.1111/jre.12742. Spandole S, Cimponeriu D, Berca LM, Mihaescu G. Human anelloviruses: an update of molecular, epidemiological and clinical aspects. Arch Virol. 2015;160(4):893–908. Al-Qahtani AA, Alabsi ES, AbuOdeh R, Thalib L, El Zowalaty ME, Nasrallah GK. Prevalence of anelloviruses (TTV, TTMDV, and TTMV) in healthy blood donors and in patients infected with HBV or HCV in Qatar. Virol J. 2016;13(1):208. Tokita H, Murai S, Kamitsukasa H, Yagura M, Harada H, Takahashi M, et al. High TT virus load as an independent factor associated with the occurrence of hepatocellular carcinoma among patients with hepatitis C virus-related chronic liver disease. J Med Virol. 2002;67(4):501–9. Charlton M, Adjei P, Poterucha J, Zein N, Moore B, Therneau T, et al. TT-virus infection in north American blood donors, patients with fulminant hepatic failure, and cryptogenic cirrhosis. Hepatology. 1998;28(3):839–42. Galmes J, Li Y, Rajoharison A, Ren L, Dollet S, Richard N, et al. Potential implication of new torque Teno mini viruses in parapneumonic empyema in children. Eur Respir J. 2013;42(2):470–9. Garcia-Alvarez M, Berenguer J, Alvarez E, Guzman-Fulgencio M, Cosin J, Miralles P, et al. Association of torque Teno virus (TTV) and torque Teno mini virus (TTMV) with liver disease among patients coinfected with human immunodeficiency virus and hepatitis C virus. Eur J Clin Microbiol Infect Dis. 2013;32(2):289–97. Zhang Y, Li F, Shan TL, Deng X, Delwart E, Feng XP. A novel species of torque Teno mini virus (TTMV) in gingival tissue from chronic periodontitis patients. Sci Rep. 2016;6:26739. Pan S, Yu T, Wang Y, Lu R, Wang H, Xie Y, et al. Identification of a torque Teno mini virus (TTMV) in Hodgkin's lymphoma patients. Front Microbiol. 2018;9:1680. Borkosky SS, Whitley C, Kopp-Schneider A, zur Hausen H, de Villiers EM. Epstein-Barr virus stimulates torque Teno virus replication: a possible relationship to multiple sclerosis. PLoS One. 2012;7(2):e32160. Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol. 1999;4(1):1–6. Parra B, Slots J. Detection of human viruses in periodontal pockets using polymerase chain reaction. Oral Microbiol Immunol. 1996;11(5):289–93. Ninomiya M, Takahashi M, Nishizawa T, Shimosegawa T, Okamoto H. Development of PCR assays with nested primers specific for differential detection of three human anelloviruses and early acquisition of dual or triple infection during infancy. J Clin Microbiol. 2008;46(2):507–14. Moen EM, Sleboda J, Grinde B. Real-time PCR methods for independent quantitation of TTV and TLMV. J Virol Methods. 2002;104(1):59–67. Kubar A, Saygun I, Ozdemir A, Yapar M, Slots J. Real-time polymerase chain reaction quantification of human cytomegalovirus and Epstein-Barr virus in periodontal pockets and the adjacent gingiva of periodontitis lesions. J Periodontal Res. 2005;40(2):97–104. Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, et al. Periodontitis: consensus report of workgroup 2 of the 2017 world workshop on the classification of periodontal and Peri-implant diseases and conditions. J Periodontol. 2018;89:S173–82. Contreras A, Nowzari H, Slots J. Herpesviruses in periodontal pocket and gingival tissue specimens. Oral Microbiol Immunol. 2000;15(1):15–8. Casarin RC, Duarte PM, Santos VR, Lima JA, Gagnon G, Casati MZ, et al. Influence of glycemic control on Epstein-Bar and cytomegalovirus infection in periodontal pocket of type 2 diabetic subjects. Arch Oral Biol. 2010;55(11):902–6. Slots J. Focal infection of periodontal origin. Periodontol. 2019;79(1):233–5. Srivastava AK, Shukla S, Srivastava P, Dhole TN, Nayak MT, Nayak A, et al. Real time detection and quantification of Epstein Barr virus in different grades of oral gingivitis and periodontitis patients. J Exp Ther Oncol. 2019;13(1):9–14. Khosropanah H, Karandish M, Ziaeyan M, Jamalidoust M. Quantification of Epstein-Barr virus and human cytomegalovirus in chronic periodontal patients. Jundishapur J Microbiol. 2015;8(6):e18691. Jankovic S, Aleksic Z, Dimitrijevic B, Lekovic V, Camargo P, Kenney B. Prevalence of human cytomegalovirus and Epstein-Barr virus in subgingival plaque at peri-implantitis, mucositis and healthy sites. A pilot study. Int J Oral Maxillofac Surg. 2011;40(3):271–6. Lin YL, Li M. Human cytomegalovirus and Epstein-Barr virus inhibit oral bacteria-induced macrophage activation and phagocytosis. Oral Microbiol Immunol. 2009;24(3):243–8. A-A HW. Frequency of salivary human cytomegalovirus in Iraqi patients with chronic periodontitis. J Fac Med Baghdad. 2013;55:162–5. Dawson DR, Wang C, Danaher RJ, Lin Y, Kryscio RJ, Jacob RJ, et al. Real-time polymerase chain reaction to determine the prevalence and copy number of epstein-barr virus and cytomegalovirus DNA in subgingival plaque at individual healthy and periodontal disease sites. J Periodontol. 2009;80(7):1133–40. Contreras A, Zadeh HH, Nowzari H, Slots J. Herpesvirus infection of inflammatory cells in human periodontitis. Oral Microbiol Immunol. 1999;14(4):206–12. Johannessen AC, Nilsen R, Kristoffersen T, Knudsen GE. Variation in the composition of gingival inflammatory cell infiltrates. J Clin Periodontol. 1990;17(5):298–305. Sahin S, Saygun I, Kubar A, Slots J. Periodontitis lesions are the main source of salivary cytomegalovirus. Oral Microbiol Immunol. 2009;24(4):340–2. Luo K, He H, Liu Z, Liu D, Xiao H, Jiang X, et al. Novel variants related to TT virus distributed widely in China. J Med Virol. 2002;67(1):118–26. Slots J, Slots H. Periodontal herpesvirus morbidity and treatment. Periodontol. 2019;79(1):210–20. Jakovljevic A, Andric M, Miletic M, Beljic-Ivanovic K, Knezevic A, Mojsilovic S, et al. Epstein-Barr virus infection induces bone resorption in apical periodontitis via increased production of reactive oxygen species. Med Hypotheses. 2016;94:40–2. Makino K, Takeichi O, Imai K, Inoue H, Hatori K, Himi K, et al. Porphyromonas endodontalis reactivates latent Epstein-Barr virus. Int Endod J. 2018;51(12):1410–9. Priyanka S, Kaarthikeyan G, Nadathur JD, Mohanraj A, Kavarthapu A. Detection of cytomegalovirus, Epstein-Barr virus, and torque Teno virus in subgingival and atheromatous plaques of cardiac patients with chronic periodontitis. J Indian Soc Periodontol. 2017;21(6):456–60. Yokoyama H, Yasuda J, Okamoto H, Iwakura Y. Pathological changes of renal epithelial cells in mice transgenic for the TT virus ORF1 gene. J Gen Virol. 2002;83(Pt 1):141–50.