Observation of a finger or an object movement primes imitative responses differentially

Springer Science and Business Media LLC - Tập 177 - Trang 255-265 - 2006
M. Jonas1,2,3, K. Biermann-Ruben4, K. Kessler4,5, R. Lange6,7, T. Bäumer6, H. R. Siebner2,8, A. Schnitzler4, A. Münchau1
1Department of Neurology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
2NeuroImage Nord, Department of Neurology, Christian-Albrechts-University of Kiel, Kiel, Germany
3Department of Systems Neuroscience, University Medical Center Hamburg Eppendorf, Hamburg, Germany
4Department of Neurology, MEG Laboratory, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
5Department of Psychology, Centre for Cognitive Neuroimaging (CCNi), University of Glasgow, Glasgow, UK
6Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
7Department of Neurology, University of Freiburg, Freiburg, Germany
8Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

Tóm tắt

Behavioural advantages for imitation of human movements over movements instructed by other visual stimuli are attributed to an ‘action observation-execution matching’ (AOEM) mechanism. Here, we demonstrate that priming/exogenous cueing with a videotaped finger movement stimulus (S1) produces specific congruency effects in reaction times (RTs) of imitative responses to a target movement (S2) at defined stimulus onset asynchronies (SOAs). When contrasted with a moving object at an SOA of 533 ms, only a human movement is capable of inducing an effect reminiscent of ‘inhibition of return’ (IOR), i.e. a significant advantage for imitation of a subsequent incongruent as compared to a congruent movement. When responses are primed by a finger movement at SOAs of 533 and 1,200 ms, inhibition of congruent or facilitation of incongruent responses, respectively, is stronger as compared to priming by a moving object. This pattern does not depend on whether S2 presents a finger movement or a moving object, thus effects cannot be attributed to visual similarity between S1 and S2. We propose that, whereas both priming by a finger movement and a moving object induces processes of spatial orienting, solely observation of a human movement activates AOEM. Thus, S1 immediately elicits an imitative response tendency. As an overt imitation of S1 is inadequate in the present setting, the response is inhibited which, in turn, modulates congruency effects.

Tài liệu tham khảo

Annett M (1985) Left, right, hand and brain: the right shift theory. Erlbaum, London Aziz-Zadeh L, Maeda F, Zaidel E, Mazziotta J, Iacoboni M (2002) Lateralization in motor facilitation during action observation: a tms study. Exp Brain Res 144(1):127–131 Baldissera F (2001) Modulation of spinal excitability during observation of hand actions in humans. Eur J Neurosci 13:190–194 Bertenthal BI, Longo MR, Kosobud A (2006) Imitative response tendencies following observation of intransitive actions. J Exp Psychol Hum Percept Perform 32(2):210–225 Brass M, Bekkering H, Prinz W (2001a) Movement observation affects movement execution in a simple response task. Acta Psychol 106(1–2):3–22 Brass M, Bekkering H, Wohlschläger A, Prinz W (2000) Compatibility between observed and executed finger movements: comparing symbolic, spatial, and imitative cues. Brain Cogn 44(2):124–143 Brass M, Derrfuss J, von Cramon DY (2005) The inhibition of imitative and overlearned responses: a functional double dissociation. Neuropsychologia 43(1):89–98 Brass M, Heyes C (2005) Imitation: is cognitive neuroscience solving the correspondence problem? Trends Cogn Sci 9(10):489–495 Brass M, Zysset S, von Cramon DY (2001b) The inhibition of imitative response tendencies. Neuroimage 14(6):1416–1423 Buccino G, Binkofski F, Fink GR, Fadiga L, Fogassi L, Gallese V et al (2001) Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. Eur J Neurosci 13(2):400–404 Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F et al (2004a) Neural circuits involved in the recognition of actions performed by nonconspecifics: an fMRI study. J Cogn Neurosci 16(1):114–126 Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund HJ et al (2004b) Neural circuits underlying imitation learning of hand actions: An event-related fMRI study. Neuron 42(2):323–334 Casey BJ, Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Schubert AB et al (1997) Implication of right frontostriatal circuitry in response inhibition and attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 36(3):374–383 Castiello U, Lusher D, Mari M, Edwards MG, Humphreys GW (2002) Observing a human or a robotic hand grasping an object: differential motor priming effects. In: Prinz W, Hommel B (eds) Attention and performance xix. Common mechanisms in perception and action. Oxford University Press, Oxford, pp. 315–333 Cochin S, Barthelemy C, Roux S, Martineau J (1999) Observation and execution of movement: similarities demonstrated by quantified electroencephalography. Eur J Neurosci 11:1839–1842 Costantini M, Galati G, Ferretti A, Caulo M, Tartaro A, Romani GL et al (2005) Neural systems underlying observation of humanly impossible movements: a fMRI study. Cereb Cortex 15(11):1761–1767 Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both pet and fMRI. J Neurosci 18(18):7426–7435 de Zubicaray GI, Andrew C, Zelaya FO, Williams SC, Dumanoir C (2000) Motor response suppression and the prepotent tendency to respond: a parametric fMRI study. Neuropsychologia 38(9):1280–1291 Decety J, Chaminade T, Grezes J, Meltzoff AN (2002) A pet exploration of the neural mechanisms involved in reciprocal imitation. Neuroimage 15(1):265–272 Decety J, Grezes J, Costes N, Perani D, Jeannerod M, Procyk E et al (1997) Brain activity during observation of actions. Influence of action content and subject’s strategy. Brain 120(19):1763–1777 Edwards MG, Humphreys GW, Castiello U (2003) Motor facilitation following action observation: a behavioural study in prehensile action. Brain Cogn 53(3):495–502 Fadiga L, Craighero L, Olivier E (2005) Human motor cortex excitability during the perception of others’ action. Curr Opin Neurobiol 15(2):213–218 Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73(6):2608–2611 Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. Neuroimage 18:324–333 Farrer C, Frith CD (2002) Experiencing oneself versus another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage 15(3):596–603 Gangitano M, Mottaghy FM, Pascual-Leone A (2001) Phase-specific modulation of cortical motor output during movement observation. Neuroreport 12(7):1489–1492 Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional mri study. Proc Natl Acad Sci USA 96(14), 8301–8306 Grafton ST, Arbib MA, Fadiga L, Rizzolatti G (1996) Localization of grasp representations in humans by positron emission tomography. 2. Observation compared with imagination. Exp Brain Res 112:101–111 Grezes J, Costes N, Decety J (1998) Top-down effect of strategy on the perception of human biological motion: a pet investigation. Cogn Neuropsychol 15:553–582 Hari R, Forss N, Avikainen S, Kirveskari E, Salenius S, Rizzolatti G (1998) Activation of human primary motor cortex during action observation: a neuromagnetic study. Proc Natl Acad Sci USA 95(25):15061–15065 Heiser M, Iacoboni M, Maeda F, Marcus J, Maziotta JC (2003) The essential role of broca´s area in imitation. Eur J Neurosci 17:1123–1128 Hommel B, Musseler J, Aschersleben G, Prinz W (2001) The theory of event coding (tec): a framework for perception and action planning. Behav Brain Sci 24(5), 849–878; discussion 878–937 Iacoboni M, Koski LM, Brass M, Bekkering H, Woods RP, Dubeau MC et al (2001) Reafferent copies of imitated actions in the right superior temporal cortex. Proc Natl Acad Sci USA 98(24), 13995–13999 Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G (1999) Cortical mechanisms of human imitation. Science 286(5449):2526–2528 Kawashima R, Satoh K, Itoh H, Ono S, Furumoto S, Gotoh R et al (1996) Functional anatomy of go/no-go discrimination and response selection—a pet study in man. Brain Res 728(1):79–89 Kessler K, Biermann-Ruben K, Jonas M, Siebner HR, Bäumer T, Münchau A et al (2006) Investigating the human mirror neuron system by means of cortical synchronization during the imitation of biological movements. Neuroimage (in press) Kessler K, Tipper SP (2004) Retrieval of implicit inhibitory processes: the impact of visual field, object-identity and memory dynamics. Vis Cogn 11(8) Kilner JM, Paulignan Y, Blakemore SJ (2003) An interference effect of observed biological movement on action. Curr Opin Biol 13(6):522–525 Klein RM (2000) Inhibition of return. Trends Cogn Sci 4(4):138–147 Koski L, Iacoboni M, Dubeau MC, Woods RP, Mazziotta JC (2003) Modulation of cortical activity during different imitative behaviors. J Neurophysiol 89(1):460–471 Krams M, et al (1998) The preparation, execution and suppression of copied movements in the human brain. Exp Brain Res pp 386–398 Leube DT, Knoblich G, Erb M, Grodd W, Bartels M, Kircher TT (2003) The neural correlates of perceiving one’s own movements. Neuroimage 20(4):2084–2090 Niemi P, Näätänen R (1981) Foreperiod and simple reaction time. Psychol Bull 89(1):133–162 Nishitani N, Hari R (2000) Temporal dynamics of cortical representation for action. Proc Natl Acad Sci USA 97(2), 913–918 Nobre AC (2001) Orienting attention to instants in time. Neuropsychologia 39(12):1317–1328 Patuzzo S, Fiaschi A, Manganotti P (2003) Modulation of motor cortex excitability in the left hemisphere during action observation: a single- and paired-pulse transcranial magnetic stimulation study of self- and non-self-action observation. Neuropsychologia 41(9):1272–1278 Pollmann S, Zaidel E (1999) Redundancy gains for visual search after complete commissurotomy. Neuropsychology 13(2):246–258 Posner MI, Cohen Y (1984) Components of visual orienting. In: Bouma H, Bouwhuis DG (eds) Attention and performance x. Control of visual processing. Erlbaum, Hillsdale, pp. 531–556 Prinz W (1997) Perception and action planning. Eur J Cogn Psychol 9(2):129–154 Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192 Rizzolatti G, Fadiga L, Fogassi L, Gallese V (1999) Resonance behaviors and mirror neurons. Archives Italiennes Biologie 137(2–3):85–100 Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Perani D, Fazio F (1996) Localization of grasp representations in humans by pet. 1. Observation versus execution. Exp Brain Res 111(2):246–252 Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670 Ruby P, Decety J (2001) Effect of subjective perspective taking during simulation of action: a pet investigation of agency. Nat Neurosci 4(5):546–550 Sakreida K, Schubotz RI, Wolfensteller U, von Cramon DY (2005) Motion class dependency in observers’ motor areas revealed by functional magnetic resonance imaging. J Neurosci 25(6):1335–1342 Stevens JA, Fonlupt P, Shiffrar M, Decety J (2000) New aspects of motion perception: selective neural encoding of apparent human movements. Neuroreport 11(1):109–115 Strafella AP, Paus T (2000) Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study. Neuroreport 11(10):2289–2293 Stürmer B (1997) Organisationsprinzipien an der Schnittstelle zwischen Wahrnehmung und Handlung: Kompatibilitätseffekte unter Verwendung dynamischer Reiz- und Reaktionseigenschaften. Shaker-Verlag, Aachen Stürmer B, Aschersleben G, Prinz W (2000) Correspondence effects with manual gestures and postures: a study of imitation. J Exp Psychol: Human Percept Perform 26(6):1746–1759 Sundara M, Namasivayam AK, Chen R (2001) Observation-execution matching system for speech: a magnetic stimulation study. Neuroreport 12(7):1341–1344 Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U (2004) The human premotor cortex is ‘mirror’ only for biological actions. Curr Opini Biol 14(2):117–120 Tanaka S, Inui T (2002) Cortical involvement for action imitation of hand/arm postures versus finger configurations: an fMRI study. Neuroreport 13(13):1599–1602 Tanaka S, Inui T, Iwaki S, Konishi J, Nakai T (2001) Neural substrates involved in imitating finger configurations: an fMRI study. Neuroreport 12(6):1171–1174 Tipper SP, Driver J, Weaver B (1991) Object-centred inhibition of return of visual attention. Q J Exp Psychol A 43(2):289–298 Tipper SP, Jordan H, Weaver B (1999) Scene-based and object-centered inhibition of return: evidence for dual orienting mechanisms. Percept Psychophys 61(1):50–60 Vogt S, Taylor P, Hopkins B (2003) Visuomotor priming by pictures of hand postures: perspective matters. Neuropsychologia 41(8):941–951 Wheaton KJ, Thompson JC, Syngeniotis A, Abbott DF, Puce A (2004) Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex. Neuroimage 22(1):277–288 Wohlschläger A, Gattis M, Bekkering H (2003) Action generation and action perception in imitation: an instance of the ideomotor principle. Philos Trans R Soc London, Series B: Biol Sci 358(1431):501–515 Wright RD, Richard CM (2000) Location cue validity affects inhibition of return of visual processing. Vision Res 40(17):2351–2358