Oat: unique among the cereals
Tóm tắt
Từ khóa
Tài liệu tham khảo
AACC (2001) The definition of dietary fibre. Cereal Foods World 46:112
Anderson JW, Chen WL (1986) Cholesterol-lowering properties of oat products. In Webster FH (ed) Oats, Chemistry and Technology, Am Assoc Cereal Chem, St Paul, MN, pp 309–333
Aman P, Rimsten L, Andersson R (2004) Molecular weight distribution of b-glucan in oat-based foods. Cereal Chem 81:356–360
Anderson JW (1995) Dietary fibre, complex carbohydrate, and coronary artery disease. Can J Cardiol 11(Suppl G):55G–62G
Anderson JW, Gilinsky NH, Deakins DA, Smith SF, O’Neal DS, Dillon DW, Oeltgen PR (1991) Lipid responses of hypercholesterolemic men to oat-bran and wheat-bran intake. Am J Clin Nutr 54:678–683
Anderson JW, Story L, Siding B, Chen WJ, Petro MS, Story J (1984) Hypocholesterolemic effects of oat-bran or bean intake for hypercholesterolemic men. Am J Chin Nutr 40:1146–1155
Anderson JW, Tietyen-Clark J (1986) Dietary fiber: hyperlipidemia, hypertension, and coronary heart disease. Am J Gastroenterol 81:907–919
Anonymous (1989) AACC committee adopts oat bran definition. Cereal Chem pp 1–24
Autio K, Myllymäki O, Mälkki Y (1987) Flow properties of solutions of oat b-glucans. J Food Sci 52:1354–1366
Autio K, Myllymäki O, Suortti T, Saastamoinen M, Poutanen K (1992) Physical properties of (1→ 3) (1→ 4)-β-D-glucan preparates isolated from Finnish oat varieties. Food Hydrocolloid 5:513–522
Bach Knudsen KE, Jensen BB, Hansen I (1993) Digestion of polysaccharides and other major components in the small and large intestine of pigs fed on diets consisting of oat fractions rich in β-D-glucan. British J Nutri 70:537–556
Baker PG (1974) Oats and coeliac disease. BMJ 4:588–589
Beer M, Wood P, Weisz J, Fillion N (1997) Effect of cooking and storage on the amount and molecular weight of (1→3)(1→4)-β-D-glucan extracted from oat products by an in vitro digestion system. Cereal Chem 74:705–709
Bell LP, Hectorn KJ, Reynolds H, Hunninghake DB (1990) Cholesterol lowering effects of soluble-fiber cereals as part of a prudent diet for patients with mild to moderate hypercholesterolemia. Am J Clin Nutr 52:1020–1026
Beynen AC, Buechler KF, Van der Molen AT, Geelen MJH (1982) The effects of lactate and acetate on fatty acid and cholesterol biosynthesis by isolated rat hepatocytes. Int J Biochem 14:165–169
Bitar K, Reinhold JG (1972) Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochim Biophys Acta 268:442–452
Braaten TJ, Wood PJ, Scott FW, Wolynetz MS, Lowe MK, Bradley-Whyte P (1994) Oat β-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 48:465–474
Bridges SR, Anderson JW, Deakins DA, Dillon DW, Wood CL (1992) Oat bran increases serum acetate of hypercholesterolemic men. Am J Clin Nutr 56:455–459
British Nutrition Foundation (1990) Complex carbohydrates in food. Report of British Nutrition Foundation, Chapman and Hall, London
Brohult S, Sandegren E (1954) In: Neurath H, Bailey KC (eds) Proteins: chemistry, biological activity, and methods, Part B, vol 2. Academic Press, New York, p 487
Brown MS, Goldstein JL (1983) Lipoprotein receptors in the liver-I control signals for plasma cholesterol traffic. J Clin Invest 72:743–747
Byington RP, Jukema JW, Salonen JT (1995) Reduction in cardiovascular events during pravastatin therapy: pooled analysis of clinical events of the Pravastatin Atherosclerosis Intervention Program. Circulation 92:2419–2425
Campbell GL, Bedford MR (1992) Enzyme applications for mono-gastric feeds: a review. Can J Anim Sci 72:449–466
Cara L, Dubois C, Borel P, Armand M, Senfi M, Portugal H, Paull A, Bernard P, Lairon D (1992) Effects of oat bran, rice bran, wheat fiber, and wheat germ on postprandial lipemia in healthy adults. Am J Clin Nutr 55:81–88
Chen WL, Anderson JW (1986) Hypocholesterolemic effects of soluble fiber. In: Vahony GV, Kritchevsky D (eds) Dietary fiber basic and clinical aspects, Plenum Press, New York, pp 275–286
Colleoni-Sirghie M, Kovalenko IV, Briggs JL, Fulton B, White PJ (2003) Rheological and molecular properties of water soluble (1→3) (1→4)-β-D-glucans from high-β-glucan and traditional oat lines. Carbohyd Polym 52:439–447
Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227
Dais PJ, Perlin AS (1982) High field, 13C-NMR spectroscopy of β-D-glucan, amylopectin and glycogen. Carbohydr Res Chem 71:301–307
Dawkins NL, Nnanna IA (1995) Studies on oat gum [(1→3, 1→ 4)-β-D-glucan]: composition, molecular weight estimation and rheological properties. Food Hydrocolloid 9:1–7
De Schrijver R, Fremaut D, Verheyen A (1992) Cholesterol lowering effects and utilization of protein, lipid, fiber and energy in rats fed unprocessed and baked oat bran. J Nutri 122:1318–1324
Degutyte-Fomins L, Sontag-Strohm T, Salovaara H (2002) Oat bran fermentation by rye sourdough. Cereal Chem 79:345–348
Dicke WK, Weijers HA, van de Kamer JH (1953) Coeliac disease. II. The presence in wheat of a factor having a deleterious effect in cases of coeliac disease. Acta Paediatr 42:34–42
Donangelo CM, Eggum BO (1986) Comparative effects of wheat bran and barley husk on nutrient utilization in rats. 2. Zinc, calcium and phosphorus. Br J Nutr 56:269–280
Dongowski G, Drzikova B, Senge B, Blochwitz R, Gebhardt E, Habel A (2005) Rheological behaviour of b-glucan preparations from oat products. Food Chem 93:279–291
Doublier JL, Wood PJ (1995) Rheological properties of aqueous solutions of (1→3) (1→4)-β-D-glucan from oat (Avena sativa L.). Cereal Chem 72:335–340
Drzikova B, Dongowski G, Gebhardt E (2005) Dietary fibre-rich oat-based products affect serum lipids, microbiota, formation of short-chain fatty acids and steroids in rats. Br J Nutr 94(6):12–25
Drzikova B, Dongowski G, Gebhardt E, Habel A (2005) The composition of dietary fiber rich extrudates from oat affects bile acid binding and fermentation in vitro. Food Chem 90:181–192
Fasano A, Berti I, Gerarduzzi T, Not T, Colletti RB, Drago S, Elitsur Y, Green PH, Guandalini S, Hill ID, Pietzak M, Ventura A, Thorpe M, Kryszak D, Fornaroli F, Wasserman SS, Murray JA, Horvath K (2003) Prevalence of celiac disease in at risk and not at risk groups in the United States: a large multi center study. Arch Intern Med 163:286–292
Fleming SE, Fitch MD, Chansler MW (1989) High-fiber diets: influence on characteristics on cecal digesta including short-chain fatty acid concentrations and pH. Am J Clin Nutr 50:93–99
Frolich W, Nyman M (1988) Minerals, phytate and dietary fibre in different fractions of oat grain. J Cereal Sci 7:73–82
Glore SR, Van TD, Knehans AW, Guild M (1994) Soluble fiber and serum lipids: a literature review. J Am Diet Assoc 94:425–436
Grehn S, Fridell K, Lilliecreutz M, Hallert C (2001) Dietary habits of Swedish adult coeliac patients treated by a glutenfree diet for 10 years. Scand J Nutr 45:178–182
Guynn RW, Veech RL (1975) Enzymatic determination of acetate. In: Lowenstein JM (ed) Methods of enzymology, vol 35. Academic Press, New York, pp 302–307
Haack VS, Chesters JG, Vollendorf NW, Story JA, Marlett JA (1998) Increasing amounts of dietary fiber provided by foods normalizes physiologic response of the large bowel without altering calcium balance or fecal steroid excretion. Am J Clin Nutr 68:615–622
Hardman CMN, Garioch JJ, Leonard JN, Thomas HJ, Walker MM, Lortan JE, Lister A, Fry L (1997) Absence of toxicity of oats in patients with dermatitis herpetiformis. N Engl J Med 337:1884–1887
Holm K, Maki M, Vuolteenaho N, Mustalahti K, Ashorn M, Ruuska T, Kaukinen K (2006) Oats in the treatment of childhood coeliac disease: a 2-year controlled trial and a long-term clinical follow-up study. Aliment Pharmacol Ther 23:1463–1472
Idouraine A, Khan MJ, Weber CW (1996) In Vitro Binding Capacity of Wheat Bran, Rice Bran, and Oat Fiber for Ca, Mg, Cu, and Zn Alone and in Different Combinations. J Agric Food Chem 44:2067–2072
Jacobs DR, Marquart L, Slavin J, Kushi LH (1998a) Whole-grain intake and cancer: an expanded review and metaanalysis. Nutr Cancer 30:85–96
Jacobs DR, Marquart L, Slavin J, Kushi LH (1998b) Whole grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: The Iowa Women’s Health Study. Am J Clin Nutr 68:248–257
Jacobs DR, Meyer KA, Kushi LH, Folsom AR (1998) Whole-grain intake may reduce the risk of ischemic heart disease death in postmenopausal women: the Iowa Women’s Health Study. Am J Clin Nutr 68:248–257
Janatuinen EK, Kemplpainen TA, Pikkarainen PH, Holm KH, Kosma VAM, Uusitupa MI, Maki M, Julkunen RJ (2000) Lack of cellular and humoral responses to oats in adults with coeliac disease. Gut 46:327–331
Janatuinen EK, Pikkarainen PH, Kemppainen TA, Kosma VM, Järvinen RM, Uusitupa MI, Julkunen RJ (1995) A comparison of diets with and without oats in adults with celiac disease. N Engl J Med 333(16):1033–1037
Jenkins AL, Jenkins DJA, Zdravkovic U, Würsch P, Vuksan V (2002) Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur J Clin Nutr 56(7):622–628
Jenkins DJ, Wolever TM, Vuksan V, Brighenti F, Cunnane SC, Rao AV, Jenkins AL, Buckley G, Patten R, Singer W (1989) Nibbling versus gorging: metabolic advantages of increased meal frequency. N Engl J Med 321(14):929–934
Johansen HN, Bach Knudsen KE, Wood PJ, Fulcher RG (1997) Physico-chemical properties and the degradation of oat bran polysaccharides in the gut of pigs. J Sci Food Agr 73:81–92
Judith H, Daniel JS, Behall KM (1995) Diets containing soluble oat extracts improve glucose and insulin responses of moderately hypercholesterolemic men and women. Am J Clin Nutr 61:379–384
Kahlon TS, Chow FI (1997) Hypocholesterolemic effects of oat, rice, and barley dietary fibers and fractions. Cereal Food World 42:86–92
Kahlon TS, Chow FI, Knuckles BE, Chiu MM (1993) Cholesterol lowering effects in hamsters of β-glucan enriched barley fraction, dehulled whole barley, rice bran, and oat bran and their combinations. Cereal Chem 70:435–440
Kahlon TS, Chow FI, Sayre RN, Betschart AA (1992a) Cholesterol lowering in hamsters fed rice bran at various levels, defatted rice bran and rice bran oil. J Nutr 122:513–519
Kahlon TS, Chow FI, Wood DF (1999) Cholesterol Response and Foam Cell Formation in Hamsters Fed Rice Bran, Oat Bran, and Cellulose + Soy Protein Diets With or Without Added Vitamin E. Cereal Chem 76(5):772–776
Kahlon TS, Saunders RM, Chow FI, Chiu MM, Betschart AA (1990) Influence of rice bran, oat bran, and wheat bran on cholesterol and triglycerides in hamsters. Cereal Chem 67:439–443
Kahlon TS, Saunders RM, Sayre RN, Chow FI, Chiu MM, Betschart AA (1992b) Cholesterol-lowering effects of rice bran and rice bran oil fractions in hypercholesterolemic hamsters. Cereal Chem 69:485–489
Kannel WB, Castelli WD, Gordon T, McNamara PM (1971) Serum cholesterol, lipoproteins, and risk of coronary artery disease. The Framingham Study. Ann Intern Med 74:1–12
Kasarda DD (2000) Celiac disease. In: Kiple KF, Ormelas C (eds) The Cambridge World History of Food, vol 1. Cambridge University Press, Cambridge, pp 1008–1022
Kerckhoffs D, Hornstra G, Mensink R (2003) Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when b-glucan is incorporated into bread and cookies. Am J Clinical Nutri 78:221–227
Kestin M, Moss R, Clifton PM, Nestel PJ (1990) Comparative effects of three cereal brans on plasma lipids, blood pressure, and glucose metabolism in mildly hypercholesterolemic men. Am J Clin Nutr 52:661–666
Kilmartin C, Lynch S, Abuzakouk M, Wieser H, Feighery C (2003) Avenin fails to induce a Th1 response in coeliac tissue following in vitro culture. Gut 52(1):47–52
Kilmartin C, Wieser H, Abuzakouk M, Kelly J, Jackson J, Feighery C (2006) Intestinal T cell responses to cereal proteins in celiac disease. Dig Dis Sci 51(1):202–209
Kirby RW, Anderson JW, Sieling B, Rees D, Chen WJL, Miller RE, Kay RM (1981) Oat-bran intake selectively lowers serum low-density hipoprotein cholesterol concentrations of hypercholesterolemic men. Am J Clin Nutr 34:824–829
Kirk RS, Sawyer R (1999) Pearson’s compostion and analysis of foods, 9th edn. Addison-Wesley Longmam Inc., Harlow, England, p 285
Kris-Etherton PM, Krummel D, Russell ME, Dreon D, Mackey S, Borchers J, Wood PD (1988) The effect of diet on plasma lipids, lipoproteins, and coronary heart disease. J Am Diet Assoc 88:1373–1400
Kupper C (2005) Dietary guidelines and implementation for celiac disease. Gastroenterology 128(4 Suppl 1):S121–S127
Lia Å, Hallmans G, Sandberg AS, Sundberg B, Åman P, Andersson H (1995) Oat β-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr 62:1245–1251
Lyly M, Salmenkallio-Marttila M, Suortti T, Autio K, Poutanen K, Lahteenmaki L (2003) Influence of oat b-glucan preparations on the perception of mouth feel and rheological properties in beverage prototypes. Cereal Chem 80:536–541
Magness JR, Markle GM, Compton CC (1971) Food and feed crops of the United States, 1st edn. Interregional Research Project IR-4, New Jersey. Bul 828
Mahley RW (1982) Atherogenic hyperlipoproteinemia. The cellular and molecular biology of plasma lipoproteins altered by dietary fat and cholesterol. Med Clin North Am 66:375–401
Marlett JA (1993) Comparisons of dietary fiber and selected nutrient compositions of oat and other grain fractions. In: Wood PJ (ed) Oat bran. American Association of Cereal Chemists, St. Paul, MN, pp 49–82
McIntosh GH, Whyte J, McArthur R, Nestel PJ (1991) Barley and wheat foods influence on plasma cholesterol concentrations in hypercholesterolemic men. Am J Clin Nutr 53:1205–1209
Miller SS, Fulcher RG, Sen A, Arnason JT (1995) Oat endosperm cell walls: I. Isolation, composition, and comparison with other tissues. Cereal Chem 72:421–427
Mälkki Y (2001) Physical properties of dietary fiber as keys to physiological functions. Cereal Food World 46:196–199
Mälkki Y, Virtanen E (2001) Gastrointestinal effects of oat bran and oat gum a review. Lebensmittel-Wissenschaft Technol 34:337–347
Parrish FW, Perlin AS, Reese ET (1960) Selective enzymolysis of poly-β-D-glucan and structure of the polymers. Can J Chem 38:2094–2104
Picarelli A, Di Tola M, Sabbatella L, Gabrielli F, Di Cello T, Anania MC, Mastracchio A, Silano M, De Vincenzi M (2001) Immunologic evidence of no harmful effect of oats in celiac disease. Am J Clin Nutr 74: 137–140
Platt SR, Clydesdale FM (1985) Binding of iron by Lignin in the presence of various concentrations of Calcium, Magnesium, and Zinc. J Food Sci 50(5):1322–1326
Qureschi AA, Burger WC, Peterson DM, Elson C (1985) Suppression of cholesterogenesis by plant constituents: review of Wisconsin contribution to NC-167. Lipids 20:817–824
Redard CL, Davis PA, Schneeman BO (1990) Dietary fiber and gender: effect on postprandial lipemia. Am J Gin Nutr 52:837–845
Reinhold JG, Faradji B, Abadi P, Ismail-Beige F (1976) Decreased absorption of calcium, magnesium, zinc and phosphorus by humans due to increased fiber and phosphorus consumption as wheat bread. J Nutr 106:493–503
Remesy C, Demigne C, Chartier F (1980) Origin and utilization of fatty acids in the rat. Reprod Nutr Dev 30:1339–1349
Reunala T, Collin P, Holm K, Pikkarainen P, Miettinen A, Vuolteenaho N, Mäki M (1998) Tolerance to oats in dermatitis herpetiformis. Gut 43:490–493
Ripsin CM, Keenan JM, Jacobs DR, Elmer PJ, Welch RR, Van Horn L, Liu K, Turnbull WH, Thye FW, Kestin M (1992) Oat products and lipid lowering: a meta-analysis. JAMA 267:3317–3325
Robertson JA, Majsak-Newman G, Ring SG (1997) Release of mixed linkage (1→3),(1→4) b-D-glucans from barley by protease activity and effects on ileal effluents. Intern J Biol Macromol 21:57–60
Rossander-Hulthen L, Gleerup A, Hallberg L (1990) Inhibitory effect of oat products on non-haem iron absorption in man. Eur J Clin Nutr 44:783–791
Sacks FM, Pfeffer MA, Moye LA, Rouleau JL, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 335:1001–1009
Sandberg AS, Andersson H, Carleeon NG, Sandstram B (1987) Degradation products on bran phytate formed during digestion in the human small intestine: effect of extrusion cooking on digestibility. J Nutr 117:2061–2065
Sandberg AS, Carleaon NG, Svanberg U (1989) In vitro studies of inositol tri-, tetra-, penta- and hexaphosphates as potential iron absorption inhibitors. In: Southgate DAT, Johnson I, Fenwick GR (eds) Nutrient availability. Royal Society of Chemistry, Cambridge, pp 158–160
Sandstorm B, Almgren A, Kivistd B, Cederblad A (1987) Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat. J Nutr 117:1898–1902
Seibert SE (1987) Oat bran as a source of soluble dietary fiber. Cereal Food World 32:552–553
Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac sprue. Science 297:2275–2279
Slavin J, Marquart L, Jacobs D Jr (2000) Consumption of whole grain foods and decreased risk of cancer: Proposed mechanisms. Cereal Food World 45:54–58
Small E (1999) New crops for Canadian agriculture. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, VA, pp 15–52
Srinivasan U, Leonard N, Jones E, Kasarda DD, Weir DG, O’Farrelly C, Feighery C (1996) Absence of oats toxicity in adult coeliac disease. BMJ 313:1300–1301
Storer GB, Trimble RP, Illman RI (1983) Effects ofdietary oat bran and diabetes on plasma and caecal volatile fatty acids in the rat. Nutr Res 3:519–526
Storsrud S, Hulthen LR, Lenner RA (2003) Beneficial effects of oats in the gluten-free diet of adults with special reference to nutrient status, symptoms and subjective experiences. Brit J Nutr 90:101–107
Sundberg B, Wood P, Lia Å, Andersson H, Sandberg AS, Hallmans G (1996) Mixed-linked β-glucan from breads of different cereals is partly degraded in the human ileostomy model 1–3. Am J Clin Nutr 64:878–885
Tapola N, Karvonen H, Niskanen L, Mikola M, Sarkkinen E (2005) Glycemic responses of oat bran products in type 2 diabetic patients. Nutr Metab Cardiovas 15(4):255–261
Thompson LU (1994) Antioxidants and hormone-mediated health benefits of whole grains. Crit Rev Food Sci Nutr 34:473–497
Trowell HC, Burkitt DP (1981) Western diseases: their emergence and prevention. Harvard University Press, Cambridge, pp 227–267
Truswell AS (1995) Dietary fibre and plasma lipids. Eur J Clin Nutr 49(suppl):5105–5109
Walker A (1985) Mineral metabolism. In: Trowell H, Burkitt D, Heaton K (eds) Dietary fibre, fibre-depleted food and disease. Academic Press London, pp 361–375
Welch R, Brown J, Leggett J (2000) Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1–3), (1–4)-b-D-glucan in an Avena atlantica genotype. J Cereal Sci 31:273–279
Whole Grains Bureau. History of Whole Grains. http://www.whole grainsbureau.ca/about_wg/history_of_ wg.html . Accessed 9 April 2007
Wikstrom K, Lindahl L, Andersson R, Westerlund E (1994) Rheological studies of water-soluble (1→3) (1→4)-β-D-glucans from milling fractions of oat. J Food Sci 59:1077–1080
Wisker E, Feldheim W, Pomeranz Y, Meuser F (1985) Dietary fiber in cereals. In: Pomeranz Y (ed) Advances in Cereal Science and Technology, Vol 7. Am Assoc Cereal Chem, St. Paul, MN, pp 169–238
Wood PJ (1984) Physiochemical properties and technological and nutritional significance of cereal β-glucans. In: Rasper VF (ed) Cereal Polysaccharides in Technology and Nutrition. Am Assoc Cereal Chem, St Paul, MN, pp 52–57
Wood PJ (1991) Oat β-glucan physicochemical properties and physiological effects. Trends Food Sci Technol 2:311–314
Wood PJ (1993) Physicochemical characteristics and physiological properties of oat (1→3) (1→4)-β-D-glucan. In: Wood PJ (ed) Oat bran. AACC Inc, St. Paul, pp 49–82
Wood PJ, Braaten JT, Scott FW, Riedel D, Poste LMJ (1990) Comparisons of viscous properties of oat and guar gum and the effects of these and oat bran on glycemic index. J Agric Food Chem 38:753–757
Wood PJ, Braaten JA, Scott FD, Riedel KD, Wolynetz MS, Collins MW (1994) Effect of dose and modification of viscous oat gum on plasma glucose and insulin following an oral glucose load. British J Nutrition 72:731–743
Wright RW, Anderson JW, Bridges SR (1990) Propionate inhibits hepatic lipid syntheses. Proc Soc Exp Biol Med 195:26–29