ORIGINAL ARTICLE: Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar

Journal of Biogeography - Tập 34 Số 1 - Trang 102-117 - 2007
Richard G. Pearson1, Christopher J. Raxworthy2, Miguel Nakamura3, A. Townsend Peterson4
1Department of Herpetology & Center for Biodiversity and Conservation, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
2Department of Herpetology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
3Centro de Investigación en Matemáticas, A.C. , Apartado Postal 402, Guanajuato, Gto, 36000, México
4Natural History Museum & Biodiversity Research Center, the University of Kansas, Lawrence, KS 66045-2454, USA

Tóm tắt

Abstract

Aim  Techniques that predict species potential distributions by combining observed occurrence records with environmental variables show much potential for application across a range of biogeographical analyses. Some of the most promising applications relate to species for which occurrence records are scarce, due to cryptic habits, locally restricted distributions or low sampling effort. However, the minimum sample sizes required to yield useful predictions remain difficult to determine. Here we developed and tested a novel jackknife validation approach to assess the ability to predict species occurrence when fewer than 25 occurrence records are available.

Location  Madagascar.

Methods  Models were developed and evaluated for 13 species of secretive leaf‐tailed geckos (Uroplatus spp.) that are endemic to Madagascar, for which available sample sizes range from 4 to 23 occurrence localities (at 1 km2 grid resolution). Predictions were based on 20 environmental data layers and were generated using two modelling approaches: a method based on the principle of maximum entropy (Maxent) and a genetic algorithm (GARP).

Results  We found high success rates and statistical significance in jackknife tests with sample sizes as low as five when the Maxent model was applied. Results for GARP at very low sample sizes (less than c. 10) were less good. When sample sizes were experimentally reduced for those species with the most records, variability among predictions using different combinations of localities demonstrated that models were greatly influenced by exactly which observations were included.

Main conclusions  We emphasize that models developed using this approach with small sample sizes should be interpreted as identifying regions that have similar environmental conditions to where the species is known to occur, and not as predicting actual limits to the range of a species. The jackknife validation approach proposed here enables assessment of the predictive ability of models built using very small sample sizes, although use of this test with larger sample sizes may lead to overoptimistic estimates of predictive power. Our analyses demonstrate that geographical predictions developed from small numbers of occurrence records may be of great value, for example in targeting field surveys to accelerate the discovery of unknown populations and species.

Từ khóa


Tài liệu tham khảo

10.1016/S0006-3207(03)00187-3

10.1046/j.1466-822X.2002.00275.x

10.1016/S0304-3800(02)00349-6

10.1080/11250000109356414

Andriamialisoa F., 2003, The natural history of Madagascar, 1

10.1111/j.2005.0906-7590.04253.x

10.1016/S0006-3207(00)00074-4

10.1111/j.1365-2486.2005.01000.x

10.1080/00222938900770101

Böhme A., 1990, Studien an Uroplatus. I Der Uroplatus‐fimbriatus ‐komplx, Salamandra, 26, 246

Böhme A., 2003, Eine neue art der gattung Uroplatus Duméril, 1805 aus ost‐Madagaskar (Reptilia: Squamata: Gekkonidae), Salamandra, 31, 129

10.1890/04-1666

10.1016/S0304-3800(02)00200-4

10.1007/BF00051966

10.1007/978-94-015-7159-3_3

10.1111/j.2006.0906-7590.04596.x

10.1111/j.0021-8901.2004.00881.x

10.1023/A:1021302930424

10.1017/S0376892997000088

10.1046/j.1523-1739.2003.02113.x

10.1016/j.tree.2004.07.006

Graham C.H., 2004, Integrating phylogenies and environmental niche models to explore speciation mechanisms in dendrobatid frogs, Evolution, 58, 1781

10.1111/j.1461-0248.2005.00792.x

10.1111/j.1466-822X.2004.00090.x

10.1007/978-0-387-21606-5

10.1080/014311697217800

10.1002/joc.1276

10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2

10.1101/SQB.1957.022.01.039

10.1890/0012-9615(1998)068[0465:PAOTSF]2.0.CO;2

10.1890/1051-0761(2000)010[1690:SOSHRM]2.0.CO;2

10.1111/j.0906-7590.2005.03957.x

10.1111/j.1523-1739.2003.00233.x

10.1111/j.1466-822X.2005.00186.x

10.1098/rspb.2003.2564

10.1038/35002501

Nix H.A., 1986, Atlas of elapid snakes, 4

10.1111/j.1472-4642.2004.00051.x

10.1016/S0304-3800(00)00322-7

10.1046/j.1466-822X.2003.00042.x

10.1016/S0304-3800(02)00056-X

10.1111/j.0906-7590.2004.03740.x

10.1111/j.1365-2699.2006.01460.x

10.1086/378926

10.1016/S0020-7519(03)00094-8

10.1111/j.1474-919X.1998.tb04391.x

10.1126/science.285.5431.1265

10.1016/j.ecolmodel.2005.03.026

Rakotomalala D., 2002, Diversité des reptiles et amphibiens de la Réserve Spéciale de Manongarivo, Madagascar, Boissiera, 59, 339

Rakotomalala D., 2001, Les amphibiens et reptiles du Parc National de Ranomafana et de la zone forestiere le reliant au Parc National d'Andringitra, Recherche pour le Développement, Série Sciences Biologiques, 17, 133

Raselimanana A.P., 1998, Inventaire biologique, Forêt d'Andranomay, Anjozorobe: La diversité de la faune de reptiles et d'amphibiens, Recherche pour le Développement, Série Sciences Biologiques, 13, 43

Raselimanana A.P., 1999, Inventaire biologique de la Réserve Spéciale de Pic d'Ivohibe et du couloire forestier qui la relie au Parc National d'Andringitra: L'herpetofauna, Recherche pour le Développement, Série Sciences Biologiques, 15, 81

Raxworthy C.J., 2003, The natural history of Madagascar, 934

10.1038/415784a

10.1038/nature02205

10.1046/j.1365-2699.2003.00946.x

10.1890/03-5374

10.1046/j.1095-8312.2003.00242.x

10.1073/pnas.0509060102

10.1098/rspb.2004.2898

10.1111/j.1365-2699.2004.01076.x

10.1098/rstb.2003.1439

10.17161/bi.v2i0.4

Sprott D.A., 2000, Statistical inference in science

10.1080/136588199241391

10.1016/S0304-3800(01)00388-X

10.1126/science.267.5199.852

10.1111/j.1461-0248.2004.00614.x

10.1038/nature02121

10.1046/j.1466-822X.2003.00033.x

10.1038/nature02716

10.1073/pnas.0409902102

10.1111/j.1365-2486.2005.001018.x

10.1175/1520-0442(1996)009<0840:AOGMPU>2.0.CO;2

10.1016/S0304-3800(02)00199-0