Nymphal RNAi: systemic RNAi mediated gene knockdown in juvenile grasshopper

Ying Dong1, Markus Friedrich1
1Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA

Tóm tắt

Abstract Background Grasshopper serves as important model system in neuroscience, development and evolution. Representatives of this primitive insect group are also highly relevant targets of pest control efforts. Unfortunately, the lack of genetics or gene specific molecular manipulation imposes major limitations to the study of grasshopper biology. Results We investigated whether juvenile instars of the grasshopper species Schistocerca americana are conducive to gene silencing via the systemic RNAi pathway. Injection of dsRNA corresponding to the eye colour gene vermilion into first instar nymphs triggered suppression of ommochrome formation in the eye lasting through two instars equivalent to 10–14 days in absolute time. QRT-PCR analysis revealed a two fold decrease of target transcript levels in affected animals. Control injections of EGFP dsRNA did not result in detectable phenotypic changes. RT-PCR and in situ hybridization detected ubiquitous expression of the grasshopper homolog of the dsRNA channel protein gene sid-1 in embryos, nymphs and adults. Conclusion Our results demonstrate that systemic dsRNA application elicits specific and long-term gene silencing in juvenile grasshopper instars. The conservation of systemic RNAi in the grasshopper suggests that this pathway can be exploited for gene specific manipulation of juvenile and adult instars in a wide range of primitive insects.

Từ khóa


Tài liệu tham khảo

Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M: Biological control of locusts and grasshoppers. Annu Rev Entomol. 2001, 46: 667-702. 10.1146/annurev.ento.46.1.667.

Kang L, Chen XY, Zhou Y, Liu BW, Zheng W, Li RQ, Wang J, Yu J: The analysis of large-scale gene expression correlated to the phase changes of the migratory locust. PNAS. 2004, 101: 17611-17615. 10.1073/pnas.0407753101.

Sword GA: To be or not to be a locust? A comparative analysis of behavioral phase change in nymphs of Schistocerca americana and S.gregaria. J Insect Physiol. 2003, 49: 709-117. 10.1016/S0022-1910(03)00092-1.

Dearden PK, Akam M: Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development. 2001, 128: 3435-3444.

Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE: Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development. 2001, 128: 3459-3472.

Gabbiani F, Krapp HG, Koch C, Laurent G: Multiplicative computation in a visual neuron sensitive to looming. Nature. 2002, 420: 320-324. 10.1038/nature01190.

Dong Y, Friedrich M: Comparative analysis of Wingless patterning in the embryonic grasshopper eye. Development Genes and Evolution. 2005, 177-197. 10.1007/s00427-004-0465-6.

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998, 391: 806-811. 10.1038/35888.

Geley S, Muller C: RNAi: ancient mechanism with a promising future. Exp Gerontol. 2004, 39: 985-998. 10.1016/j.exger.2004.03.040.

Timmons L, Fire A: Specific interference by ingested dsRNA. Nature. 1998, 395: 854-10.1038/27579.

Tabara H, Grishok A, Mello CC: RNAi in C.elegans: soaking in the genome sequence. Science. 1998, 282: 430-431. 10.1126/science.282.5388.430.

Winston WM, Molodowitch C, Hunter CP: Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science. 2002, 295: 2456-2459. 10.1126/science.1068836.

Feinberg EH, Hunter CP: Transport of dsRNA into cells by the transmembrane protein SID-1. Science. 2003, 301: 1545-1547. 10.1126/science.1087117.

Duxbury MS, Ashley SW, Whang EE: RNA interference: A mammalian SID-1 homologue enhances siRNA uptake and gene silencing efficacy in human cells. Biochem Biophys Res Commun. 2005, 331: 459-463. 10.1016/j.bbrc.2005.03.199.

Amdam GV, Simoes ZL, Guidugli KR, Norberg K, Omholt SW: Disruption of vitellogenin gene function in adult honeybees by intra-abdominal injection of double-stranded RNA. BMC Biotechnol. 2003, 3: 1-10.1186/1472-6750-3-1.

Sanchez Alvarado A, Newmark PA: Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci U S A. 1999, 96: 5049-5054. 10.1073/pnas.96.9.5049.

Tomoyasu Y, Denell RE: Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol. 2004, 214: 575-578. 10.1007/s00427-004-0434-0.

Bucher G, Scholten J, Klingler M: Parental RNAi in Tribolium (Coleoptera). Curr Biol. 2002, 12: R85-6. 10.1016/S0960-9822(02)00666-8.

Roignant JY, Carre C, Mugat B, Szymczak D, Lepesant JA, Antoniewski C: Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA. 2003, 9: 299-308. 10.1261/rna.2154103.

Walker AR, Howells AJ, Tearle RG: Cloning and characterization of the vermilion gene of Drosophila melanogaster. Mol Gen Genet. 1986, 202: 102-107. 10.1007/BF00330524.

Beadle GW, Ephrussi B: Development of eye colors in Drosophila: diffusible substances and their interrelations. Genetics. 1937, 22: 76-86.

Bentley D, Keshishian H, Shankland M, Toroian-Raymond A: Quantitative staging of embryonic development of the grasshopper, Schistocerca nitens. J Embryol Exp Morphol. 1979, 54: 47-74.

Linzen B: The tryptophan -> ommochrome pathway in insects. Advances in insect physiology. Edited by: Treherne JE, Berridge MJ and Wigglesworth VB. 1974, London, New York, Academic Press

Fabrick JA, Kanost MR, Baker JE: RNAi-induced silencing of embryonic tryptophan oxygenase in the Pyralid moth, Plodia interpunctella. J Insect Sci. 2004, 4: 15-

Lorenzen MD, Brown SJ, Denell RE, Beeman RW: Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase. Genetics. 2002, 160: 225-234.

Marie B, Bacon JP, Blagburn JM: Double-stranded RNA interference shows that Engrailed controls the synaptic specificity of identified sensory neurons. Curr Biol. 2000, 10: 289-292. 10.1016/S0960-9822(00)00361-4.

Liu PZ, Kaufman TC: hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development. 2004, 131: 1515-1527. 10.1242/dev.01046.

Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S: Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development. 2005, 132: 2069-2079. 10.1242/dev.01784.