Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility

Achille Schiavone1,2, Michele De Marco2, Silvia Martínez3, Sihem Dabbou2, Manuela Renna4, Josefa Madrid Sánchez3, Luca Rotolo4, Pierluca Costa2, Francesco Gai1, Laura Gasco1,4
1Institute of Science of Food Production, National Research Council, Grugliasco, Italy
2Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
3Department of Animal Production University of Murcia Murcia Spain
4Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

FAO (Food and Agriculture Organization of the United Nations). How to feed the world 2050: Global agriculture towards 2050. Rome: Food and Agriculture Organization of the United Nations (FAO); 2009. p. 12–3.

Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, et al. Yellow mealworm larvae (Tenebrio molitor L.) as a possible alternative to soybean meal in broiler diets. Br Poult Sci. 2015;56(5):569–75.

Gasco L, Henry M, Piccolo G, Marono S, Gai F, Renna M, et al. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim Feed Sci Technol. 2016;220:34–45.

Belforti M, Gai F, Lussiana C, Renna M, Malfatto V, Rotolo L, et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital J Anim Sci. 2015;14:670–75.

Henry M, Gasco L, Piccolo G, Fountoulaki E. Review on the use of insects in the diet of farmed fish: past and future. Anim Feed Sci Technol. 2015;203:1–22.

Makkar HP, Tran G, Heuzé V, Ankers P. State of the art on use of insects as animal feed. Anim Feed Sci Technol. 2014;197:1–33.

Nguyen TTX, Tomberlin JK, Vanlaerhoven S. Ability of Black Soldier Fly (Diptera: Stratiomyidae) Larvae to recycle food waste. Environ Entomol. 2015;44(2):407–10.

Spranghers T, Ottoboni M, Klootwijk C, Ovyn A, Deboosere S, De Meulenaer B, et al. Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. J Sci Food Agr. 2017;97:2594–600.

Oonincx DGAB, van Broekhoven S, van Huis A, van Loon JJA. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS One. 2015;10(12):e0144601.

Veldkamp T, Van Duinkerken G, Van Huis A, Iakemond CMM, Ottevanger E, Bosch G, et al. Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. Wageningen UR Livest. Res. 2012. Report 638.

Maurer V, Holinger M, Amsler Z, Früh B, Wohlfahrt J, Stamer A, et al. Replacement of soybean cake by Hermetia illucens meal in diets for layers. J Insects Food Feed. 2016;2(2):83–90.

De Marco M, Martínez S, Hernandez F, Madrid J, Gai F, Rotolo L, et al. Nutritional value of two insect meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Anim Feed Sci Technol. 2015;209:211–8.

Kroeckel S, Harjes AGE, Roth I, Katz H, Wuertz S, Susenbeth A, et al. When a turbot catches a fly: evaluation of a pre-pupae meal of the Black Soldier Fly (Hermetia illucens) as fish meal substitute – growth performance and chitin degradation in juvenile turbot (Psetta maxima). Aquaculture. 2012;364–365:345–52.

Fasakin EA, Balogun AM, Ajayi OO. Evaluation of full-fat and defatted maggot meals in the feeding of clariid catfish Clarias gariepinus fingerlings. Aquac Res. 2003;34:733–8.

Lock EJ, Arsiwalla T, Waagbø R. Insect larvae meal as an alternative source of nutrients the diet of Atlantic salmon (Salmo salar) postsmolt. Aquacult Nutr. 2016;22:1202–13.

Veldkamp T, Bosch G. Insects: a protein-rich feed ingredient in pig and poultry diets. Anim Front. 2015;5(2):45–50.

Hossain MA, Nahar N, Kamal M. Nutrient digestibility coefficients of some plant and animal proteins for rohu (Labeo rohita). Aquaculture. 1997;151:37–45.

Belforti M, Lussiana C, Malfatto V, Rotolo L, Zoccarato I, Gasco L. Two rearing substrates on Tenebrio molitor meal composition: issues on aquaculture and biodiesel production. In: Vantomme P, Munke C, van Huis A, editors. 1st International Conference “Insects to Feed the World”. The Netherlands: Wageningen University, Ede-Wageningen; 2014. p. 59.

Surendra KC, Olivier R, Tomberlin JK, Jha R, Khanal SK. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renew Energy. 2016;98:197–202.

Ravindran V, Hew LI, Ravindran G, Bryden WL. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim Sci. 2005;8:85–97.

AOAC. Official methods of analysis. 18th ed. Washington: AOAC International; 2005.

Wang X, Chen X, Chen L, Wang B, Peng C, He C, et al. Optimizing high-performance liquid chromatography method for quantification of glucosamine using 6-aminoquinolyl-N-hydroxisuccinimidyl carbamate derivation in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr. 2008;22:1265–71.

Madrid J, Martínez S, López C, Orengo J, López MJ, Hernández F. Effects of low protein diets on growth performance, carcass traits and ammonia emission of barrows and gilts. Anim Prod Sci. 2013;53:146–53.

Marquardt RR. A simple spectrophotometric method for the direct determination of uric acid in avian excreta. Poult Sci. 1983;62:2106–08.

Short FJ, Gorton P, Wiseman J, Boorman KN. Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim Feed Sci Technol. 1996;59:215–21.

Nalle CL, Ravindran V, Ravindran G. Nutritional value of white lupins (Lupinus albus) for broilers: apparent metabolizable energy, apparent ileal amino acid digestibility and production performance. Animal. 2012;6:579–85.

Hill FW, Anderson DL. Comparison of metabolizable energy and productive energy determinations with growing chicks. J Nutr. 1958;64:587–603.

SPSS. Statistical Package for the Social Sciences, version 17.0. New York: Mc Graw-Hill; 2008.

Tran G, Sauvant D. Tables of composition and nutritional value of feed materials: pigs, poultry, cattle, sheep, goats, rabbits, horses, fish. In: Sauvant D, Pérez JM and Tran G (editors). Chemical data and nutritional value. Paris: Institut National de la Recherche Agronomique, Association Française de Zootechnie; 2004. p. 17–24.

Ravindran V, Hew LI, Ravindran G, Bryden WL. A comparison of ileal digesta and excreta analysis for the determination of amino acid digestibility in food ingredients for poultry. Br Poult Sci. 1999;40:266–74.

Cullere M, Tasoniero G, Giaccone V, Miotti-Scapin R, Claeys E, De Smet S, et al. Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Animal. 2016;10(12):1923–30.

Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. Insect meal as renewable source of food for animal feeding: a review. J Clean Prod. 2014;65:16–27.

Purschke B, Stegmann T, Schreiner M, Jäger H. Pilot-scale supercritical CO2 extraction of edible insect oil from Tenebrio molitor L. larvae – Influence of extraction conditions on kinetics, defatting performance and compositional properties. Eur J Lipid Sci Technol. 2017;119:1–12.

Zhao X, Vázquez-Gutiérrez JL, Johansson DP, Landberg R, Langton M. Yellow mealworm protein for food purposes - Extraction and functional properties. PLoS One. 2016;11(2):e0147791.

Tschirner M, Simon A. Influence of different growing substrates and processing on the nutrient composition of black soldier fly larvae destined for animal feed. J Insects Food Feed. 2015;1(4):249–59.

Sheppard C, Newton GL, Burtle G. Black soldier fly prepupae a compelling alternative to fish meal and fish oil. A public comment prepared in response to a request by the National Marine Fisheries Service. Tifton: University of Georgia; 2007.

Castell JD. Aquaculture nutrition. In: Bilio M, Rosenthal H, Sinderman CJ, editors. Realism in Aquaculture; Advances, Constraints, Perspectives, Bredene, Belgium: European Aquaculture Society. 1986. p. 251–308.

Diener S, Zubrügg C, Trockner K. Conversion of organic material by black soldier fly larvae: establishing optimal feeding rates. Waste Manag Res. 2009;27:603–10.

Finke MD. Complete nutrient content of four species of feeder insects. Zoo Biol. 2013;32:27–36.

Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquaculture. 2014;422/423:193–201.

Huang KH, Li X, Ravidran V, Bryden WL. Comparison of apparent ileal amino acid digestibility of feed ingredients measured with broilers, layers and roosters. Poult Sci. 2006;85:625–34.

Valencia DG, Serrano MP, Lázaro R, Jiménez-Moreno E, Mateos GG. Influence of micronization (fine grinding) of soya bean meal and full-fat soya bean on the ileal digestibility of amino acids for broilers. Anim Feed Sci Technol. 2009;150:238–48.

Elwert C, Knips I, Katz P. A novel protein source: maggot meal of the black soldier fly (Hermetia illucens) in broiler feed. In: Gierus M, Kluth H, Bulang M, Kluge H, editors. Tagung Schweine- und Geflügelernährung, November 23–25, 2010, Institut für Agrar- und Ernährungswissenschaften, Universität HalleWittenberg, Lutherstadt Wittenberg, Germany. 2010. p. 140–42.

Schiavone A, Cullere M, De Marco M, Meneguz M, Biasato I, Bergagna S, et al. Partial or total replacement of soybean oil by black soldier larvae (Hermetia illucens L.) fat in broiler diets: effect on growth performances, feed-choice, blood traits, carcass characteristics and meat quality. Ital J Anim Sci. 2017;16:93–100. doi: 10.1080/1828051X.2016.1249968 .

Suzuki M, Fujimoto W, Goto M, Morimatsu M, Syuto B, Toshihiko I. Cellular expression of gut chitinase mRNA in the gastrointestinal tract of mice and chickens. J Histochem Cytochem. 2002;50:1081–9.

Hossain S, Blair R. Chitin utilization by broilers and its effect on body composition and blood metabolites. Br Poult Sci. 2007;48(1):33–8.

Razdan A, Pettersson D. Effect of chitin and chitosan on nutrient digestibility and plasma lipid concentrations in broiler chickens. Br J Nutr. 1994;72(2):277–88.

Khempaka S, Chitsatchapong C, Molee W. Effect of chitin and protein constituents in shrimp head meal on growth performance, nutrient digestibility, intestinal microbial populations, volatile fatty acids, and ammonia production in broilers. J Appl Poult Res. 2011;20:1–11.

Vidanarachchi JK, Kurukulasuriya MS, Kim SK. Chitin, chitosan and their oligosaccharides in food industry. In: Kim SK, editor. Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications. New York: CRC Press; 2010. p. 543–60.

Marono S, Piccolo G, Loponte R, Di Meo C, Attia YA, Nizza A, et al. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci. 2015;14:338–43.

Muzzarelli RAA. Chitin. Oxford: Pergamon Press; 1977.

Longvah T, Mangthya K, Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011;128:400–3.

Huang KH, Ravindran V, Li X, Bryden WL. Influence of age on the apparent ileal amino acid digestibility of feed ingredients for broiler chickens. Br Poult Sci. 2005;46:236–45.