Nutritional status in young children prior to the malaria transmission season in Burkina Faso and Mali, and its impact on the incidence of clinical malaria
Tóm tắt
Malaria and malnutrition remain major problems in Sahel countries, especially in young children. The direct effect of malnutrition on malaria remains poorly understood, and may have important implications for malaria control. In this study, nutritional status and the association between malnutrition and subsequent incidence of symptomatic malaria were examined in children in Burkina Faso and Mali who received either azithromycin or placebo, alongside seasonal malaria chemoprevention. Mid-upper arm circumference (MUAC) was measured in all 20,185 children who attended a screening visit prior to the malaria transmission season in 2015. Prior to the 2016 malaria season, weight, height and MUAC were measured among 4149 randomly selected children. Height-for-age, weight-for-age, weight-for-height, and MUAC-for-age were calculated as indicators of nutritional status. Malaria incidence was measured during the following rainy seasons. Multivariable random effects Poisson models were created for each nutritional indicator to study the effect of malnutrition on clinical malaria incidence for each country. In both 2015 and 2016, nutritional status prior to the malaria season was poor. The most prevalent form of malnutrition in Burkina Faso was being underweight (30.5%; 95% CI 28.6–32.6), whereas in Mali stunting was most prevalent (27.5%; 95% CI 25.6–29.5). In 2016, clinical malaria incidence was 675 per 1000 person-years (95% CI 613–744) in Burkina Faso, and 1245 per 1000 person-years (95% CI 1152–1347) in Mali. There was some evidence that severe stunting was associated with lower incidence of malaria in Mali (RR 0.81; 95% CI 0.64–1.02; p = 0.08), but this association was not seen in Burkina Faso. Being moderately underweight tended to be associated with higher incidence of clinical malaria in Burkina Faso (RR 1.27; 95% CI 0.98–1.64; p = 0.07), while this was the case in Mali for moderate wasting (RR 1.27; 95% CI 0.98–1.64; p = 0.07). However, these associations were not observed in severely affected children, nor consistent between countries. MUAC-for-age was not associated with malaria risk. Both malnutrition and malaria were common in the study areas, high despite high coverage of seasonal malaria chemoprevention and long-lasting insecticidal nets. However, no strong or consistent evidence was found for an association between any of the nutritional indicators and the subsequent incidence of clinical malaria.
Tài liệu tham khảo
WHO. Malaria factsheet. Geneva: World Health Organization; 2020. https://www.who.int/news-room/fact-sheets/detail/malaria.
WHO. World Malaria Report 2019. Geneva: World Health Organization; 2019.
WHO. High Burden to High Impact: A targeted malaria response. Geneva: World Health Organization; 2019.
President’s Malaria Initiative. Mali Country Profile. 2018. https://www.pmi.gov/docs/default-source/default-document-library/country-profiles/mali_profile.pdf?sfvrsn=24#:~:text=Malaria is the primary cause,the main cause of infection.
Ministère de la Santé Burkina Faso. Annuaire statistique. 2018. http://www.cns.bf/IMG/pdf/annuaire_ms_2018.pdf.
United Nations Office for the Coordination of Humanitarian Affairs. 2014 Humanitarian Needs Overview - Sahel region. 2013. https://www.humanitarianresponse.info/sites/www.humanitarianresponse.info/files/documents/files/HNO_Sahel_final.pdf.
Weiss DJ, Lucas TCD, Nguyen M, Nandi AK, Bisanzio D, Battle KE, et al. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum, 2000–17: a spatial and temporal modelling study. Lancet. 2019;394:322–31.
Akombi BJ, Agho KE, Merom D, Renzaho AM, Hall JJ. Child malnutrition in sub-Saharan Africa: a meta-analysis of demographic and health surveys (2006–2016). PLoS One. 2017;12:e0177338.
Scrimshaw NS, Taylor CE, Gordon JE, WHO Group. Interactions of nutrition and infection. Geneva: World Health Organization; 1968.
Das D, Grais RF, Okiro EA, Stepniewska K, Mansoor R, van der Kam S, et al. Complex interactions between malaria and malnutrition: a systematic literature review. BMC Med. 2018;16:186.
d’Avila FE, Alexandre MA, Salinas JL, de Siqueira AM, Benzecry SG, de Lacerda MVG, et al. Association between anthropometry-based nutritional status and malaria: a systematic review of observational studies. Malar J. 2015;14:346.
Fillol F, Cournil A, Boulanger D, Cisse B, Sokhna C, Targett G, et al. Influence of wasting and stunting at the onset of the rainy season on subsequent malaria morbidity among rural preschool children in Senegal. Am J Trop Med Hyg. 2009;80:202–8.
Arinaitwe E, Gasasira A, Verret W, Homsy J, Wanzira H, Kakuru A, et al. The association between malnutrition and the incidence of malaria among young HIV-infected and -uninfected Ugandan children: a prospective study. Malar J. 2012;11:90.
Deen JL, Walraven GE, von Seidlein L. Increased risk for malaria in chronically malnourished children under 5 years of age in rural Gambia. J Trop Pediatr. 2002;48:78–83.
Gari T, Loha E, Deressa W, Solomon T, Lindtjorn B. Malaria increased the risk of stunting and wasting among young children in Ethiopia: results of a cohort study. PLoS One. 2018;13:e0190983.
Tonglet R, Mahangaiko Lembo E, Zihindula PM, Wodon A, Dramaix M, Hennart P. How useful are anthropometric, clinical and dietary measurements of nutritional status as predictors of morbidity of young children in central Africa? Trop Med Int Health. 1999;4:120–30.
Ward A, Guillot A, Nepomnyashchiy LE, Graves JC, Maloney K, Omoniwa OF, et al. Seasonal malaria chemoprevention packaged with malnutrition prevention in northern Nigeria: a pragmatic trial (SMAMP study) with nested case-control. PLoS One. 2019;14:e0210692.
Jones KDJ, Berkley JA. Severe acute malnutrition and infection. Paediatr Int Child Health. 2014;34:S1-29.
de Onis M, Yip R, Mei Z. The development of MUAC-for-age reference data recommended by a WHO Expert Committee. Bull World Health Organ. 1997;75:11–8.
Chandramohan D, Dicko A, Zongo I, Sagara I, Cairns M, Kuepfer I, et al. Effect of adding azithromycin to seasonal malaria chemoprevention. N Engl J Med. 2019;380:2197–206.
Gore-Langton GR, Cairns M, Compaore YD, Sagara I, Kuepfer I, Zongo I, et al. Effect of adding azithromycin to the antimalarials used for seasonal malaria chemoprevention on the nutritional status of African children. Trop Med Int Health. 2020;25:740–50.
Swysen C, Vekemans J, Bruls M, Oyakhirome S, Drakeley C, Kremsner P, et al. Development of standardized laboratory methods and quality processes for a phase III study of the RTS, S/AS01 candidate malaria vaccine. Malar J. 2011;10:223.
WHO. Malnutrition Fact sheets. Geneva: World Health Organization; 2018. http://www.who.int/news-room/fact-sheets/detail/malnutrition.
WHO. Child growth standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and develoment. Geneva: World Health Organization; 2006.
WHO. Child growth standards: Head circumference-for-age, arm circumference-for-age, triceps skinfold-for-age and subscapular skinfold-for-age: methods and development. Geneva: World Health Organization; 2007.
Terlouw DJ, Courval JM, Kolczak MS, Rosenberg OS, Oloo AJ, Kager PA, et al. Treatment history and treatment dose are important determinants of sulfadoxine-pyrimethamine efficacy in children with uncomplicated malaria in Western Kenya. J Infect Dis. 2003;187:467–76.
WHO. Guidelines for malaria. Geneva: World Health Organization; 2021.
Cairns ME, Sagara I, Zongo I, Kuepfer I, Thera I, Nikiema F, et al. Evaluation of seasonal malaria chemoprevention in two areas of intense seasonal malaria transmission: secondary analysis of a household-randomised, placebo-controlled trial in Houndé District, Burkina Faso and Bougouni District. Mali PLoS Med. 2020;17:e1003214.
Institut National de la Statistique et de la Démographie (INSD) et ICF International. Enquête Démographique et de Santé et à Indicateurs Multiples du Burkina Faso 2010. Calverton, Maryland, USA; 2012.
Cellule de Planification et de Statistiques (CPS/SSDSPF), Insititut National de Statistique (INSTAT, MPATP), INFO-STAT et ICF International. Enquête Démographique et de Santé au Mali 2012–2013. Rockville, Maryland, USA; 2014.
Genton B, Al-Yaman F, Ginny M, Taraika J, Alpers MP. Relation of anthropometry to malaria morbidity and immunity in Papua New Guinean children. Am J Clin Nutr. 1998;68:734–41.
Muller O, Garenne M, Kouyate B, Becher H. The association between protein-energy malnutrition, malaria morbidity and all-cause mortality in West African children. Trop Med Int Health. 2003;8:507–11.
Berkley J, Mwangi I, Griffiths K, Ahmed I, Mithwani S, English M, et al. Assessment of severe malnutrition among hospitalized children in rural Kenya: comparison of weight for height and mid upper arm circumference. JAMA. 2005;294:591–7.
Briend A, Maire B, Fontaine O, Garenne M. Mid-upper arm circumference and weight-for-height to identify high-risk malnourished under-five children. Matern Child Nutr. 2012;8:130–3.
Shankar AH. Nutritional modulation of malaria morbidity and mortality. J Infect Dis. 2000;182(Suppl):S37-53.
Owoaje E, Onifade O, Desmennu A. Family and socioeconomic risk factors for undernutrition among children aged 6 to 23 Months in Ibadan Nigeria. Pan Afr Med J. 2014;17:161.
Worrall E, Basu S, Hanson K. Is malaria a disease of poverty? A review of the literature. Trop Med Int Health. 2005;10:1047–59.