Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases

Nutrients - Tập 9 Số 11 - Trang 1168
Bruna Jardim Quintanilha1,2, Bruna Zavarize Reis3, Graziela Biude da Silva Duarte3, Sílvia Maria Franciscato Cozzolino3, Marcelo Macedo Rogero1,2
1Food Research Center (FoRC), 05508-000 São Paulo, Brazil
2Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil
3Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil

Tóm tắt

Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials).

Từ khóa


Tài liệu tham khảo

Cominetti, 2017, Brazilian Society for Food and Nutrition position statement: Nutrigenetic tests, Nutrire, 42, 10, 10.1186/s41110-017-0033-2

Huntzinger, E., and Izaurralde, E. (2011). Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat. Rev. Genet., 99–110.

Vasudevan, 2007, Switching from repression to activation: MicroRNAs can up-regulate translation, Science, 318, 1931, 10.1126/science.1149460

Osella, M., Riba, A., Testori, A., Corà, D., and Caselle, M. (2014). Interplay of microRNA and epigenetic regulation in the human regulatory network. Front. Genet., 5.

Wang, 2015, Coordinated action of histone modification and microRNA regulations in human genome, Gene, 570, 277, 10.1016/j.gene.2015.06.046

Su, Z., Xia, J., and Zhao, Z. (2011). Functional complementation between transcriptional methylation regulation and post-transcriptional microRNA regulation in the human genome. BMC Genom., 12.

Lin, S., and Gregory, R.I. (2015). MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer, 321–333.

Cloonan, N., Wani, S., Xu, Q., Gu, J., Lea, K., and Heater, S. (2011). MicroRNAs and their functions isomiRs function cooperatively to target commom biological pathways. Genome Biol.

Weber, 2010, The microRNA spectrum in 12 body fluids, Clin. Chem., 56, 1733, 10.1373/clinchem.2010.147405

Barile, L., Moccetti, T., Marbán, E., and Vassalli, G. (2016). Roles of exosomes in cardioprotection. Eur. Heart J.

Guo, M., Mao, X., and Ji, Q. (2010). miR-146a in PBMCs modulates Th1 function in patients with acute coronary syndrome. Immunol. Cell Biol., 555–564.

Valadi, 2007, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol., 9, 654, 10.1038/ncb1596

Xu, 2012, Circulating microRNAs: novel biomarkers for cardiovascular diseases, J. Mol. Med., 90, 865, 10.1007/s00109-011-0840-5

Vrijens, 2015, MicroRNAs as potential signatures of environmental exposure or effect: A systematic review, Environ. Health Perspect., 123, 399, 10.1289/ehp.1408459

Tili, 2010, Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD, Carcinogenesis, 31, 1561, 10.1093/carcin/bgq143

Vinciguerra, 2009, Unsaturated fatty acids inhibit the expression of tumor suppressor phosphatase and tensin homolog (PTEN) via microRNA-21 up-regulation in hepatocytes, Hepatology, 49, 1176, 10.1002/hep.22737

Ortega, 2015, Circulating profiling reveals the effect of a polyunsaturated fatty acid-enriched diet on common microRNAs, J. Nutr. Biochem., 26, 1095, 10.1016/j.jnutbio.2015.05.001

Swan, 2013, Selenium alters miRNA profile in an intestinal cell line: Evidence that miR-185 regulates expression of GPX2 and SEPSH2, Mol. Nutr. Food Res., 57, 2195, 10.1002/mnfr.201300168

Rasheed, Z., Rasheed, N., and Al-Shaya, O. (2017). Epigallocatechin-3-O-gallate modulates global microRNA expression in interleukin-1β-stimulated human osteoarthritis chondrocytes: Potential role of EGCG on negative co-regulation of microRNA-140-3p and ADAMTS5. Eur. J. Nutr., 1–12.

Kronski, 2014, miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and -2, Mol. Oncol., 8, 581, 10.1016/j.molonc.2014.01.005

Abbas, A.K., Lichtman, A.H.H., and Pillai, S. (2014). Cellular and Molecular Immunology, Elsevier Health Sciences. [8th ed.].

Murphy, K., and Weaver, C. (2016). Janeway’s Immunobiology, Garland Science. [9th ed.].

Libby, 2007, Inflammatory mechanisms: The molecular basis of inflammation and disease, Nutr. Rev., 65, S140, 10.1301/nr.2007.dec.S140-S146

Medzhitov, R. (2008). Origin and physiological roles of inflammation. Nature.

Han, J., and Ulevitch, R.J. (2005). Limiting inflammatory responses during activation of innate immunity. Nat. Immunol., 1198–1205.

O’Rourke, R.W. (2013). Inflammation, obesity, and the promise of immunotherapy for metabolic disease. Surg. Obes. Relat. Dis., 609–616.

Bondia-Pons, I., Ryan, L., and Martinez, J.A. (2012). Oxidative stress and inflammation interactions in human obesity. J. Physiol. Biochem., 701–711.

Maskrey, 2011, Mechanisms of resolution of inflammation, Arterioscler. Thromb. Vasc. Biol., 31, 1001, 10.1161/ATVBAHA.110.213850

Medzhitov, R. (2010). Inflammation 2010: New adventures of an old flame. Cell, 771–776.

Hotamisligil, 2006, Inflammation and metabolic disorders, Nature, 444, 860, 10.1038/nature05485

Mraz, 2014, The role of adipose tissue immune cells in obesity and low-grade inflammation, J. Endocrinol., 222, R113, 10.1530/JOE-14-0283

Galic, 2010, Adipose tissue as an endocrine organ, Mol. Cell. Endocrinol., 316, 129, 10.1016/j.mce.2009.08.018

Bastos, D.H.M., Rogero, M.M., and Arêas, J.A.G. (2009). Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. Arq. Bras. Endocrinol. Metab., 646–656.

Shah, 2008, Adipose inflammation, insulin resistance, and cardiovascular disease, JPEN J. Parenter Enter. Nutr., 32, 638, 10.1177/0148607108325251

Lumeng, C.N., and Saltiel, A.R. (2011). Inflammatory links between obesity and metabolic disease. J. Clin. Investig., 2111–2117.

Mancini, M.C. (2015). Fisiologia e morfologia do tecido adiposo humano. Tratado de Obesidade, GEN.

Greenberg, 2006, Obesity and the role of adipose tissue in inflammation and metabolism, Am. J. Clin. Nutr., 83, 461S, 10.1093/ajcn/83.2.461S

Tilg, 2006, Adipocytokines: Mediators linking adipose tissue, inflammation and immunity, Nat. Rev. Immunol., 6, 772, 10.1038/nri1937

Goossens, 2008, The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance, Physiol. Behav., 94, 206, 10.1016/j.physbeh.2007.10.010

Maury, 2010, Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome, Mol. Cell. Endocrinol., 314, 1, 10.1016/j.mce.2009.07.031

Elks, 2010, Central adiposity, systemic inflammation, and the metabolic syndrome, Curr. Hypertens. Rep., 12, 99, 10.1007/s11906-010-0096-4

Kahn, S.E., Hull, R.L., and Utzschneider, K.M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 840–846.

Savini, I., Catani, M.V., Evangelista, D., Gasperi, V., and Avigliano, L. (2013). Obesity-associated oxidative stress: Strategies finalized to improve redox state. Int. J. Mol. Sci., 10497–10538.

Vincent, H.K., and Taylor, A.G. (2006). Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes., 400–418.

Pal, M., Febbraio, M.A., and Lancaster, G.I. (2016). The roles of c-Jun NH2-terminal kinases (JNKs) in obesity and insulin resistance. J. Physiol., 267–279.

Baud, V., and Karin, M. (2009). Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov., 33–40.

Vallabhapurapu, 2009, Regulation and function of NF-κB transcription factors in the immune system, Annu. Rev. Immunol., 27, 693, 10.1146/annurev.immunol.021908.132641

Rao, 2012, microRNA regulation of inflammatory responses, Annu. Rev. Immunol., 30, 295, 10.1146/annurev-immunol-020711-075013

Wei, Y., and Schober, A. (2016). MicroRNA regulation of macrophages in human pathologies. Cell. Mol. Life Sci., 3473–3495.

Contreras, J., and Rao, D.S. (2012). MicroRNAs in inflammation and immune responses. Leukemia, 404–413.

Hulsmans, M., De Keyzer, D., and Holvoet, P. (2011). MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB, 2515–2527.

Chang, R.C.-A., Ying, W., Bazer, F.W., and Zhou, B. (2014). MicroRNAs control macrophage formation and activation: The inflammatory link between obesity and cardiovascular diseases. Cells, 702–712.

Klöting, N., Berthold, S., Kovacs, P., Schön, M.R., Fasshauer, M., Ruschke, K., Stumvoll, M., and Blüher, M. (2009). MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE.

Iliopoulos, D., Jaeger, S.A., Hirsch, H.A., Bulyk, M.L., and Struhl, K. (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell, 493–506.

Sheedy, F.J., Palsson-McDermott, E., Hennessy, E.J., Martin, C., O’Leary, J.J., Ruan, Q., Johnson, D.S., Chen, Y., and O’Neill, L.A. (2010). Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat. Immunol., 141–147.

Das, A., Ganesh, K., Khanna, S., Sen, C.K., and Roy, S. (2014). Engulfment of apoptotic cells by macrophages: A role of microRNA-21 in the resolution of wound inflammation. J. Immunol., 1120–1129.

Sun, Y.-M., Lin, K.-Y., and Chen, Y.-Q. (2013). Diverse functions of miR-125 family in different cell contexts. J. Hematol. Oncol.

Zhao, X., Tang, Y., Qu, B., Cui, H., Wang, S., Wang, L., Luo, X., Huang, X., Li, J., and Chen, S. (2010). MicroRNA-125a contributes to elevated inflammatory chemokine RANTES levels via targeting KLF13 in systemic lupus erythematosus. Arthritis Rheumatol., 3425–3435.

Pan, W., Zhu, S., Dai, D., Liu, Z., Li, D., Li, B., Gagliani, N., Zheng, Y., Tang, Y., and Weirauch, M.T. (2015). Weirauch MT: MiR-125a targets effector programs to stabilize Treg-mediated immune homeostasis. Nat. Commun.

Lee, 2016, MiR-146 and miR-125 in the regulation of innate immunity and inflammation, BMB Rep., 49, 311, 10.5483/BMBRep.2016.49.6.056

Xu, L.L., Shi, C.M., Xu, G.F., Chen, L., Zhu, L.L., Zhu, L., Guo, X.R., Xu, M.Y., and Ji, C.B. (2014). TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes. Cell Biochem. Biophys., 771–776.

Huang, N., Wang, J., Xie, W., Lyu, Q., Wu, J., He, J., Qiu, W., Xu, N., and Zhang, Y. (2015). MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem. Biophys. Res. Commun., 37–42.

Ishida, M., Shimabukuro, M., Yagi, S., Nishimoto, S., Kozuka, C., Fukuda, D., Soeki, T., Masuzaki, H., Tsutsui, M., and Sata, M. (2014). MicroRNA-378 regulates adiponectin expression in adipose tissue: A new plausible mechanism. PLoS ONE.

Chou, W.-W., Wang, Y.-T., Liao, Y.-C., Chuang, S.-C., Wang, S.-N., and Juo, S.-H.H. (2013). Decreased microRNA-221 is associated with high levels of TNF-α in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell. Physiol. Biochem., 127–137.

Creemers, E.E., Tijsen, A.J., and Pinto, Y.M. (2012). Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease?. Circ. Res., 483–495.

Hoekstra, M., van der Lans, C.A.C., Halvorsen, B., Gullestad, L., Kuiper, J., Aukrust, P., van Berkel, T.J.C., and Biessen, E.A.L. (2010). The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem. Biophys. Res. Commun., 792–797.

Wei, Y., Nazari-Jahantigh, M., Neth, P., Weber, C., and Schober, A. (2013). MicroRNA-126, -145, and-155: A therapeutic triad in atherosclerosis?. Arterioscler. Thromb. Vasc. Biol., 449–454.

Weber, 2010, MicroRNAs in arterial remodelling, inflammation and atherosclerosis, Curr. Drug Targets, 11, 950, 10.2174/138945010791591377

Zhu, 2011, Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration, Atherosclerosis, 215, 286, 10.1016/j.atherosclerosis.2010.12.024

Fang, 2010, MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro, Proc. Natl. Acad. Sci. USA, 107, 13450, 10.1073/pnas.1002120107

Villeneuve, 2010, Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1, Diabetes, 59, 2904, 10.2337/db10-0208

Nakamachi, 2009, MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis, Arthritis Rheumatol., 60, 1294, 10.1002/art.24475

Aranha, M.M., Santos, D.M., Solá, S., Steer, C.J., and Rodrigues, C.M.P. (2011). miR-34a regulates mouse neural stem cell differentiation. PLoS ONE, 6.

Strum, 2009, MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1, Mol. Endocrinol., 23, 1876, 10.1210/me.2009-0117

Mechtler, 2015, MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade, Oncotarget, 6, 17097, 10.18632/oncotarget.4005

Cruz, K.J.C., Oliveira, A.R.S., Morais, J.B.S., Severo, J.S., and Marreiro, D.N. (2016). The role of MicroRNAs on adipogenesis, chronic low grade inflammation and insulin resistance in obesity. Nutrition.

Ma, 2011, MicroRNAs in NF-κB signaling, J. Mol. Cell Biol., 3, 159, 10.1093/jmcb/mjr007

Imaizumi, 2010, IFN-γ and TNF-α synergistically induce microRNA-155 which regulates TAB2/IP-10 expression in human mesangial cells, Am. J. Nephrol., 32, 462, 10.1159/000321365

Androulidaki, 2009, The kinase Akt1 controls macrophage response to lipopolysaccharide by regulating microRNAs, Immunity, 31, 220, 10.1016/j.immuni.2009.06.024

Kahn, 2010, MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development, Immunity, 33, 607, 10.1016/j.immuni.2010.09.009

Taganov, 2007, MicroRNA-155 is induced during the macrophage inflammatory response, Proc. Natl. Acad. Sci. USA, 104, 1604, 10.1073/pnas.0610731104

Boldin, M.P., Taganov, K.D., Rao, D.S., Yang, L., Zhao, J.L., Kalwani, M., Garcia-Flores, Y., Luong, M., Devrekanli, A., and Xu, J. (2011). miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med.

Latruffe, 2015, Exploring new ways of regulation by resveratrol involving miRNAs, with emphasis on inflammation, Ann. N. Y. Acad. Sci., 1348, 97, 10.1111/nyas.12819

Lancon, 2012, Control of MicroRNA expression as a new way for resveratrol to deliver its beneficial effects, J. Agric. Food Chem., 60, 8783, 10.1021/jf301479v

Takashina, 2017, Different effect of resveratrol to induction of apoptosis depending on the type of human cancer cells, Int. J. Oncol., 50, 787, 10.3892/ijo.2017.3859

Li, 2015, Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: Role of the TLR4/NF-κB signaling pathway, Mol. Med. Rep., 11, 1120

Gambini, J., Inglés, M., Olaso, G., Lopez-Grueso, R., Bonet-Costa, V., Gimeno-Mallench, L., Mas-Bargues, C., Abdelaziz, K.M., Gomez-Cabrera, M.C., and Vina, J. (2015). Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxid. Med. Cell. Longev., 2015.

Song, 2016, Involvement of miR-Let7A in inflammatory response and cell survival/apoptosis regulated by resveratrol in THP-1 macrophage, Nutr. Res. Pract., 10, 377, 10.4162/nrp.2016.10.4.377

Li, 2013, Resveratrol repressed viability of U251 cells by miR-21 inhibiting of NF-κB pathway, Mol. Cell. Biochem., 382, 137, 10.1007/s11010-013-1728-1

Bigagli, 2017, Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages, Int. Immunopharmacol., 43, 147, 10.1016/j.intimp.2016.12.012

Tomé-Carneiro, J., Larrosa, M., Yánez-Gascón, M.J., Dávalos, A., Gil-Zamorano, J., Gonzálvez, M., García-Almagro, F.J., Ros, J.A.R., Tomás-Barberán, F.A., and Espín, J.C. (2013). One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol. Res.

Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., and Chabo, C. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 1761–1772.

Martinez, K.B., Leone, V., and Chang, E.B. (2017). Western diets, gut dysbiosis, and metabolic diseases: Are they linked?. Gut Microbes, 1–13.

Pruimboom, 2013, Lifestyle and nutritional imbalances associated with western diseases: Causes and consequences of chronic systemic low-grade inflammation in an evolutionary context, J. Nutr. Biochem., 24, 1183, 10.1016/j.jnutbio.2013.02.009

Gheewala, 2008, Dietary strategies for improving post-prandial glucose, lipids, inflammation, and cardiovascular health, J. Am. Coll. Cardiol., 51, 249, 10.1016/j.jacc.2007.10.016

Wang, Y., Qian, Y., Fang, Q., Zhong, P., Li, W., Wang, L., Fu, W., Zhang, Y., Xu, Z., and Li, X. (2017). Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat. Commun., 8.

Wong, 2009, Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner, J. Biol. Chem., 284, 27384, 10.1074/jbc.M109.044065

Lee, 2001, Saturated fatty acids, but not unsaturated fatty acids, induce the expression of cyclooxygenase-2 mediated through Toll-like receptor 4, J. Biol. Chem., 276, 16683, 10.1074/jbc.M011695200

Yang, 2014, Saturated fatty acid-induced miR-195 impairs insulin signaling and glycogen metabolism in HepG2 cells, FEBS Lett., 588, 3939, 10.1016/j.febslet.2014.09.006

Yang, W.-M., Min, K.-H., and Lee, W. (2016). Induction of miR-96 by dietary saturated fatty acids exacerbates hepatic insulin resistance through the suppression of INSR and IRS-1. PLoS ONE, 11.

Yang, 2016, MiR-1271 upregulated by saturated fatty acid palmitate provokes impaired insulin signaling by repressing INSR and IRS-1 expression in HepG2 cells, Biochem. Biophys. Res. Commun., 478, 1786, 10.1016/j.bbrc.2016.09.029

Yang, 2014, Induction of miR-29a by saturated fatty acids impairs insulin signaling and glucose uptake through translational repression of IRS-1 in myocytes, FEBS Lett., 588, 2170, 10.1016/j.febslet.2014.05.011

Takahashi, 2016, High-fat diet increases vulnerability to atrial arrhythmia by conduction disturbance via miR-27b, J. Mol. Cell. Cardiol., 90, 38, 10.1016/j.yjmcc.2015.11.034

Talukdar, 2010, GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects, Cell, 142, 687, 10.1016/j.cell.2010.07.041

Calder, 2013, Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology?, Br. J. Clin. Pharmacol., 75, 645, 10.1111/j.1365-2125.2012.04374.x

Roessler, C., Kuhlmann, K., Hellwing, C., Leimert, A., and Schumann, J. (2017). Impact of polyunsaturated fatty acids on miRNA profiles of monocytes/macrophages and endothelial cells—A pilot study. Int. J. Mol. Sci., 18.

Visioli, 2012, Molecular targets of omega 3 and conjugated linoleic fatty acids—“micromanaging” cellular response, Front. Physiol., 3, 42, 10.3389/fphys.2012.00042

Krishnamoorthy, 2012, Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs, Am. J. Pathol., 180, 2018, 10.1016/j.ajpath.2012.01.028

Fredman, 2012, Self-limited versus delayed resolution of acute inflammation: Temporal regulation of pro-resolving mediators and microRNA, Sci. Rep., 2, 639, 10.1038/srep00639

Wang, 2014, Leukotriene B4 enhances the generation of proinflammatory microRNAs to promote MyD88-dependent macrophage activation, J. Immunol., 192, 2349, 10.4049/jimmunol.1302982

Tejera, 2017, Significance of long chain polyunsaturated fatty acids in human health, Clin. Transl. Med., 6, 25, 10.1186/s40169-017-0153-6

Li, 2013, Plasticity of leukocytic exudates in resolving acute inflammation is regulated by MicroRNA and proresolving mediators, Immunity, 14, 885, 10.1016/j.immuni.2013.10.011

Recchiuti, 2011, MicroRNAs in resolution of acute inflammation: Identification of novel resolvin D1-miRNA circuits, FASEB J., 25, 544, 10.1096/fj.10-169599

Codagnone, 2017, Lipoxin A4 stimulates endothelial miR-126-5p expression and its transfer via microvesicles, FASEB J., 31, 1856, 10.1096/fj.201600952R

Chiu, 2014, Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways, J. Nutr. Biochem., 25, 934, 10.1016/j.jnutbio.2014.04.007

Zheng, 2015, PUFA diets alter the microRNA expression profiles in an inflammation rat model, Mol. Med. Rep., 11, 4149, 10.3892/mmr.2015.3318

Siriwardhana, 2013, Modulation of adipose tissue inflammation by bioactive food compounds, J. Nutr. Biochem., 24, 613, 10.1016/j.jnutbio.2012.12.013

Hatcher, 2008, Curcumin: From ancient medicine to current clinical trials, Cell. Mol. Life Sci., 65, 1631, 10.1007/s00018-008-7452-4

Ma, 2017, Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice, Pharm. Biol., 55, 1263, 10.1080/13880209.2017.1297838

Aboussekhra, 2015, miR-146b-5p mediates p16-dependent repression of IL-6 and suppresses paracrine procarcinogenic effects of breast stromal fibroblasts, Oncotarget, 6, 30006, 10.18632/oncotarget.4933

Tian, 2017, Curcumin represses mouse 3T3-L1 cell adipogenic differentiation via inhibiting miR-17-5p and stimulating the Wnt signalling pathway effector Tcf7l2, Cell Death Dis., 8, e2559, 10.1038/cddis.2016.455

Marunaka, Y., Marunaka, R., Sun, H., Yamamoto, T., Kanamura, N., Inui, T., and Taruno, A. (2017). Actions of quercetin, a polyphenol, on blood pressure. Molecules, 22.

Wagner, 2012, Effect of quercetin on inflammatory gene expression in mice liver in vivo—Role of redox factor 1, miRNA-122 and miRNA-125b, Pharmacol. Res., 65, 523, 10.1016/j.phrs.2012.02.007

Loboda, 2011, Effect of quercetin and its metabolites isorhamnetin and quercetin-3-glucuronide on inflammatory gene expression: Role of miR-155, J. Nutr. Biochem., 22, 293, 10.1016/j.jnutbio.2010.02.008

Graham, 1992, Green tea composition, consumption, and polyphenol chemistry, Prev. Med., 21, 334, 10.1016/0091-7435(92)90041-F

Manach, 2005, Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies, Am. J. Clin. Nutr., 81, 230S, 10.1093/ajcn/81.1.230S

Arola-Arnal, A., and Blade, C. (2011). Proanthocyanidins modulate microRNA expression in human HepG2 cells. PLoS ONE, 6.

Yamada, S., Tsukamoto, S., Huang, Y., Makio, A., Kumazoe, M., Yamashita, S., and Tachibana, H. (2016). Epigallocatechin-3-O-gallate up-regulates microRNA-let-7b expression by activating 67-kDa laminin receptor signaling in melanoma cells. Sci. Rep., 6.

Rayman, 2000, The importance of selenium to human health, Lancet, 356, 233, 10.1016/S0140-6736(00)02490-9

Guallar, 2006, Selenium and coronary heart disease: A meta-analysis, Am. J. Clin. Nutr., 84, 762, 10.1093/ajcn/84.4.762

Bleys, J., Navas-Acien, A., and Guallar, E. (2008). Serum selenium levels and all-cause, cancer, and cardiovascular mortality among US adults. Arch. Intern. Med., 404–410.

Xing, 2015, MicroRNA expression profiles in rats with selenium deficiency and the possible role of the Wnt/β-catenin signaling pathway in cardiac dysfunction, Int. J. Mol. Med., 35, 143, 10.3892/ijmm.2014.1976

Alehagen, U., Johansson, P., Aaseth, J., Alexander, J., and Wågsäter, D. (2017). Significant changes in circulating microRNA by dietary supplementation of selenium and coenzyme Q10 in healthy elderly males. A subgroup analysis of a prospective randomized double-blind placebo-controlled trial among elderly Swedish citizens. PLoS ONE, 12.

Chasapis, 2012, Zinc and human health: An update, Arch. Toxicol., 86, 521, 10.1007/s00204-011-0775-1

Alder, H., Taccioli, C., Chen, H., Jiang, Y., Smalley, K.J., Fadda, P., Ozer, H.G., Huebner, K., Farber, J.L., and Croce, C.M. (2012). Dysregulation of miR-31 and miR-21 induced by zinc deficiency promotes esophageal cancer. Carcinogenesis.

Ryu, 2011, Genomic analysis, cytokine expression, and microRNA profiling reveal biomarkers of human dietary zinc depletion and homeostasis, Proc. Natl. Acad. Sci. USA, 108, 20970, 10.1073/pnas.1117207108

Zeljic, K., Supic, G., and Magic, Z. (2017). New insights into vitamin D anticancer properties: Focus on miRNA modulation. Mol. Genet. Genomics, 1–14.

Dambal, 2017, microRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma, J. Steroid Biochem. Mol. Biol., 167, 192, 10.1016/j.jsbmb.2017.01.004

Kempinska-Podhorodecka, A., Milkiewicz, M., Wasik, U., Ligocka, J., Zawadzki, M., Krawczyk, M., and Milkiewicz, P. (2017). Decreased expression of vitamin D receptor affects an immune response in primary biliary cholangitis via the VDR-miRNA155-SOCS1 pathway. Int. J. Mol. Sci., 18.

Karkeni, E., Bonnet, L., Marcotorchino, J., Tourniaire, F., Astier, J., Ye, J., and Landrier, J.F. (2017). Vitamin D limits inflammation-linked microRNA expression in adipocytes in vitro and in vivo: A new mechanism for the regulation of inflammation by vitamin D. Epigenetics.

Panizo, S., Carrillo-Lopez, N., Naves-Diaz, M., Solache-Berrocal, G., Martinez-Arias, L., Rodrigues-Diez, R.R., Fernandez-Vazquez, A., Martinez-Salgado, C., Ruiz-Ortega, M., and Dusso, A. (2017). Regulation of miR-29b and miR-30c by vitamin D receptor activators contributes to attenuate uraemia-induced cardiac fibrosis. Nephrol. Dial. Transplant.

Mansouri, L., Lundwall, K., Moshfegh, A., Jacobson, S.H., Lundahl, J., and Spaak, J. (2017). Vitamin D receptor activation reduces inflammatory cytokines and plasma MicroRNAs in moderate chronic kidney disease—A randomized trial. BMC Nephrol., 18.

Giangreco, 2013, Tumor suppressor microRNAs, miR-100 and-125b, are regulated by 1, 25-dihydroxyvitamin D in primary prostate cells and in patient tissue, Cancer Prev. Res., 6, 483, 10.1158/1940-6207.CAPR-12-0253

Perri, 2017, 9-cis Retinoic acid modulates myotrophin expression and its miR in physiological and pathophysiological cell models, Exp. Cell Res., 354, 25, 10.1016/j.yexcr.2017.03.022

Zhang, J., Gao, Y., Yu, M., Wu, H., Ai, Z., Wu, Y., Liu, H., Du, J., Guo, Z., and Zhang, Y. (2015). Retinoic acid induces embryonic stem cell differentiation by altering both encoding RNA and microRNA expression. PLoS ONE, 10.

Khan, S., Wall, D., Curran, C., Newell, J., Kerin, M.J., and Dwyer, R.M. (2015). MicroRNA-10a is reduced in breast cancer and regulated in part through retinoic acid. BMC Cancer, 15.

Takahashi, 2012, TGF-beta and retinoic acid induce the microRNA miR-10a, which targets Bcl-6 and constrains the plasticity of helper T cells, Nat. Immunol., 13, 587, 10.1038/ni.2286

Tsang, 2010, Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells, J. Nutr. Biochem., 21, 140, 10.1016/j.jnutbio.2008.12.003

Zhang, 2012, Exogenous plant MIR168a specifically targets mammalian LDLRAP1: Evidence of cross-kingdom regulation by microRNA, Cell Res., 22, 107, 10.1038/cr.2011.158

Chen, X., Dai, G.-H., Ren, Z.-M., Tong, Y.-L., Yang, F., and Zhu, Y.-Q. (2016). Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. Biomed. Res. Int.

Baier, 2014, MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers, J. Nutr., 144, 1495, 10.3945/jn.114.196436

Snow, 2013, Ineffective delivery of diet-derived microRNAs to recipient animal organisms, RNA Biol., 10, 1107, 10.4161/rna.24909

Daimiel, 2016, Unsuccessful detection of plant microRNAs in beer, extra virgin olive oil and human plasma after an acute ingestion of extra virgin olive oil, Plant Foods Hum. Nutr., 71, 102, 10.1007/s11130-016-0534-9

Philip, 2015, Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process, Mol. Nutr. Food Res., 59, 1962, 10.1002/mnfr.201500137

Jiang, 2012, Beyond nutrients: Food-derived microRNAs provide cross-kingdom regulation, Bioessays, 34, 280, 10.1002/bies.201100181

Benmoussa, 2016, Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions, J. Nutr., 146, 2206, 10.3945/jn.116.237651

Denzler, 2015, Uptake and function studies of maternal milk-derived microRNAs, J. Biol. Chem., 290, 23680, 10.1074/jbc.M115.676734

Zhang, H., Li, Y., Liu, Y., Liu, H., Wang, H., Jin, W., Zhang, Y., Zhang, C., and Xu, D. (2016). Role of plant MicroRNA in cross-species regulatory networks of humans. BMC Syst. Biol., 10.

Wagner, 2015, Food derived microRNAs, Food Funct., 6, 714, 10.1039/C4FO01119H

Igaz, 2015, Hypothetic interindividual and interspecies relevance of microRNAs released in body fluids, EXS, 106, 281

Lukasik, A., and Zielenkiewicz, P. (2016). Plant MicroRNAs—Novel players in natural medicine?. Int. J. Mol. Sci., 18.

Otsuka, K., Yamamoto, Y., Matsuoka, R., and Ochiya, T. (2017). Maintaining good miRNAs in the body keeps the doctor away? Perspectives on the relationship between food-derived natural products and microRNAs in relation to exosomes/extracellular vesicles. Mol. Nutr. Food Res.