Nutrigenomics and Personalized Diets: What Will They Mean for Food?

Annual review of food science and technology - Tập 2 Số 1 - Trang 97-123 - 2011
J. Bruce German1,2,3, Angela M. Zivkovic1,4, David C. Dallas1, Jennifer T. Smilowitz1,4,5
1Department of Food Science & Technology, University of California, Davis, California 95616
2Foods for Health Institute, University of California, Davis, California 95616, USA.
3Nestle Research Center, Lausanne, 1000, Switzerland
4Foods for Health Institute, University of California, Davis, California 95616;
5University of California, Davis

Tóm tắt

The modern food system feeds six billion people with remarkable diversity, safety, and nutrition. Yet, the current rise in diet-related diseases is compromising health and devaluing many aspects of modern agriculture. Steps to increase the nutritional quality of individual foods will assist in personalizing health and in guiding individuals to achieve superior health. Nutrigenomics is the scientific field of the genetic basis for varying susceptibilities to disease and the diverse responses to foods. Although some of these genetic determinants will be simple and amenable to personal genotyping as the means to predict health, in practice most will not. As a result, genotyping will not be the secret to personalizing diet and health. Human assessment technologies from imaging to proteomics and metabolomics are providing tools to both understand and accurately assess the nutritional phenotype of individuals. The business models are also emerging to bring these assessment capabilities to industrial practice, in which consumers will know more about their personal health and seek personal solutions.

Từ khóa


Tài liệu tham khảo

10.1016/j.jprot.2009.11.008

10.1002/pmic.200900514

Alberti G., 2001, Bull. WHO, 79, 907

10.1097/MCG.0b013e3181d7760b

10.1111/j.1750-3841.2009.01402.x

10.1016/j.atherosclerosis.2008.12.007

10.1074/mcp.M000055-MCP201

10.3945/ajcn.2009.28822

10.1161/CIRCULATIONAHA.106.676379

10.1002/jps.21311

10.1097/MPG.0b013e31819774a5

Benus RFJ, 2010, Br. J. Nutr., 29, 1

10.1021/pr900344m

10.1038/nature08689

Bovine Genome Seq. Anal. Consort., Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, et al. 2009. The genome sequence of taurine cattle: a window to ruminant biology and evolution.Science324:522–28

10.1073/pnas.1002181107

10.1002/pd.2006

10.1097/00075197-200403000-00006

10.1021/ac8022857

10.1038/ijo.2010.44

10.1152/japplphysiol.01231.2007

10.1016/j.ijfoodmicro.2010.04.017

10.3945/ajcn.2009.28095

10.1101/sqb.2009.74.019

10.3168/jds.2008-1676

10.1007/s00335-009-9204-7

10.1073/pnas.0704292104

10.1007/s00109-009-0451-6

10.1038/nature05401

10.3382/ps.2009-00361

10.1038/ejcn.2009.100

10.1210/jc.2009-1465

10.1038/nm.2087

10.1038/nature01626

10.1038/ng2024

10.1038/nature06525

10.1186/1471-2164-9-351

10.1089/omi.2008.0001

Cui K, 2008, Physiol. Plant., 132, 53, 10.1111/j.1399-3054.2007.00991.x

10.1007/s10142-010-0167-2

10.1002/mas.20108

Domínguez C, Cabrera L, Rodríguez P, Borges Á, Carrillo F, et al. 2010. Association between glycemic index, glycemic load, and fructose with insulin resistance: the CDC of the Canary Islands study.Eur. J. Nutr.Online First: 1–8

10.3945/ajcn.2009.29058

EFSA (Eur. Food Saf. Auth.). 2008. Panel Working Group on Animal Feeding Trials (2008) Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.Food Chem. Toxicol.46:2–70

10.3945/ajcn.2009.28064

10.1016/j.atherosclerosis.2010.03.027

10.1079/BJN19850010

Forsythe IJ, 2009, Curr. Protocols Bioinforma., 25, 14.8, 10.1002/0471250953.bi1408s25

10.1093/jn/132.8.2382S

10.1021/jf100112x

10.1016/S1673-8527(09)60033-3

10.1021/jf1006616

10.1016/j.nut.2009.05.006

10.1016/j.copbio.2010.01.005

10.3945/ajcn.2009.27536

10.1089/omi.2008.0031

10.1093/jn/133.12.4260

10.1111/j.1749-6632.1993.tb38732.x

10.1038/nrendo.2009.102

10.1160/TH09-01-0013

10.1186/1471-2350-11-81

10.1038/nature07206

10.1017/S0007114508006806

10.1586/14789450.4.2.239

10.1146/annurev.nutr.28.061807.155446

10.1371/journal.pone.0006395

10.1053/j.gastro.2009.08.042

10.1073/pnas.0903103106

10.1093/jn/134.9.2200

10.1016/j.cell.2008.08.026

10.1086/528697

10.1093/ajcn/80.4.1050

10.1159/000212735

10.2337/dc09-2155

10.1002/jssc.200900152

10.3945/jn.109.109355

10.1186/1475-2840-8-35

10.1093/ajcn/85.5.1417

10.2174/138920309788922234

10.1093/molehr/gap012

10.1016/j.jnutbio.2009.06.008

10.1073/pnas.1001945107

10.2337/dc08-1935

10.1096/fj.09-148452

10.1159/000204960

10.1016/j.semcdb.2009.05.008

10.1016/j.numecd.2009.04.009

10.1186/gb-2009-10-4-r43

10.1096/fj.08-121962

10.3945/jn.109.114710

10.1007/s00424-006-0120-3

10.1021/jf0710480

10.1159/000095064

10.1002/mnfr.200800192

10.1111/j.1472-765X.2009.02698.x

10.1038/msb4100153

10.1128/AEM.00380-09

10.1093/jn/133.8.2549

10.1016/j.jfca.2009.02.004

10.1096/fj.09-140145

Messika A, Kaluski D, Lev E, Iakobishvili Z, Shohat M, et al. 2010. Nutrigenetic impact of daily folate intake on plasma homocysteine and folate levels in patients with different methylenetetrahydrofolate reductase genotypes.Eur. J. Cardiovasc. Prev. Rehabil.Published Ahead of Print: 10.1097/HJR.1090b1013e32833a32831cb32835

10.1093/ajcn/49.4.629

10.1093/carcin/bgn212

10.1016/j.plefa.2010.02.014

10.1002/prca.200600771

10.1016/j.bbrc.2006.12.167

10.1201/9781420067767

10.1152/ajpregu.00880.2007

10.1016/j.cell.2008.06.051

10.3168/jds.2007-0330

10.1080/01639360802261920

10.1053/j.gastro.2008.10.080

10.1111/j.0006-341X.2002.00701.x

10.1007/s00394-009-0034-x

10.1097/MOG.0b013e3282f323f3

10.1073/pnas.0906198106

10.3945/ajcn.2009.27113E

10.1186/1743-7075-7-25

10.1146/annurev-nutr-080508-141138

10.1053/j.gastro.2009.11.045

10.1016/j.jprot.2010.04.003

10.1155/2010/527850

10.1210/jc.2004-1489

10.1186/1471-2458-6-222

10.1186/1471-2164-11-117

10.1093/ajcn/84.2.289

10.1016/j.fm.2009.07.011

10.1111/j.1399-3038.2008.00718.x

10.1038/oby.2007.117

10.1080/07315724.2009.10719797

10.1021/jf8034868

10.1038/ijo.2009.136

10.1371/journal.pone.0006646

10.1021/jf063507n

10.1093/ajcn/88.2.253

10.1373/clinchem.2009.140087

10.1007/2789_2008_097

10.1038/nbt1235

10.1111/j.1365-2052.2006.01434.x

10.1146/annurev.food.080708.100743

10.1128/MCB.00370-09

10.1371/journal.pone.0001681

10.1073/pnas.0809584105

10.1093/carcin/23.12.2055

10.1128/AEM.00113-08

10.1146/annurev.publhealth.031809.130844

10.3945/ajcn.2008.26445

10.3945/jn.108.095364

10.3945/jn.108.101956

10.1016/j.ahj.2009.02.001

10.1001/archinternmed.2009.503

10.1038/35103535

10.1371/journal.pgen.1000338

Tang L, 2010, Br. J. Dermatol., 163, 38, 10.1111/j.1365-2133.2010.09748.x

10.1016/j.pep.2010.05.013

Thalacker-Mercer AE, Fleet JC, Craig BA, Campbell WW. 2010. The skeletal muscle transcript profile reflects accommodative responses to inadequate protein intake in younger and older males.J. Nutr. Biochem.Epub ahead of print

10.1113/jphysiol.2009.174136

10.1038/nature07540

10.1038/nature06244

10.3168/jds.2009-2406

10.1126/science.1058040

10.1126/science.1179721

10.1021/pr901203w

10.1007/s00125-010-1662-7

10.1038/nature08727

10.3945/jn.108.091009

10.1038/oby.2008.583

10.1201/9781420065558-c9

10.1002/ajpa.20735

10.1371/journal.pone.0009153

10.1073/pnas.0911570106

10.1073/pnas.0812874106

10.1093/ajcn/88.2.348

10.1038/clpt.2009.240

10.1021/pr901188e

10.1097/MPG.0b013e31802c41b7

10.1093/ajcn/86.3.542

10.3945/ajcn.2009.27113B

10.1126/science.1091867

10.1007/s00122-008-0914-0

10.1002/rcm.3975

10.2217/pgs.09.173

10.1097/MCO.0b013e32832f1916

Zivkovic AM, German JB, Lebrilla CB, Mills DA. 2010. Human milk glycobiome and its impact on the infant gastrointestinal microbiota.Proc. Natl. Acad. Sci. USAEpub ahead of print

10.1007/s11306-008-0136-0