Nutrient cycling in forests

New Phytologist - Tập 124 Số 4 - Trang 561-582 - 1993
P. M. Attiwill1, Mark A. Adams1
1School of Botany, The University of Melbourne, Parkville, Victoria, 3052, Australia

Tóm tắt

SUMMARYStudies of nutrient cycling in forests span more than 100 yr. In earlier years, most attention was given to the measurement of the pools of nutrients in plants and soil and of the return of nutrients from plant to soil in litterfall. The past 20 yr or so have seen a major concentration on the processes of nutrient cycling, with particular emphasis on those processes by which the supply of nutrients to the growing forest is sustained. In the more highly productive forests, up to 10 tonnes of litter of low nutritional quality is deposited annually on the forest floor. The decomposition of this litter, the mineralization of the nutrients it holds, and the uptake of nutrients by tree roots in the carbon‐rich environment which results are the themes of this review.Studies of decomposition of litter in forests have been dominated by the role of nitrogen as a limiting factor, a domination which reflects the preponderance of studies of temperate forests in the Northern Hemisphere. For many forests of the world growing on soils of considerable age, it seems more probable that growth and nutrient cycling are limited by phosphorus (or some other element). There is increasing evidence for a number of forests that phosphorus is immobilized in the first stages of decomposition to a significantly greater extent than is nitrogen. Advances in research will depend, as with studies of soil organic matter, in denning and developing analytical techniques for studying biologically active forms of potentially limiting nutrients, rather than total elemental concentrations.The availability of phosphorus in forests is sustained by phosphorus cycling. More than 50% of the total phosphorus in the surface soils is in organic forms and much of the more labile phosphorus is in the form of diesters. Phosphorus availability is determined by competition between biological and geochemical sinks, and it is clear that the sinks in the rhizosphere (plant roots, microorganisms, soil mineral and organic components) are extensively modified by active processes (e.g. production of exudates, nutrient storage in a variety of organic or polymeric forms and nutrient transport away from sites of uptake). There is abundant evidence that roots of many species exude compounds which have the ability to solubilize sources of phosphorus of otherwise low availability. The significance of root exudates (for example, phosphatases, organic acids) in the functioning of perennial ecosystems has yet to be quantified and there are conflicting reports as to the effects of simple organic acids on phosphorus availability. The distribution of phosphorus sinks and their relative competitiveness and their modification are topics of fundamental importance for future research.In contrast to the mineralization of phosphorus, our knowledge of transformations and availability of nitrogen in forest soils is well‐developed. Net nitrogen mineralization rates approximate rates of nitrogen return in litterfall but the contribution of nitrification is variable. Nitrification is not inhibited by the low pH of many forest soils and there is increasing evidence of nitrate immobilization by microorganisms and of increased diversity and better competitiveness for NH4+ of nitrifying microorganisms than has previously been accepted. Variability in rates of nitrification is often interpreted as being due to allelopathy. Hypotheses invoking allelopathy are more or less untestable, and it seems likely that new techniques using 15N in situ will lead to a more fundamental understanding of nitrogen transformations in forest soils. Recent studies in coniferous forest soils have highlighted the short (< 1 d) turnover time of NH4+.Finally, it seems that forest soils are resistant to major changes in patterns of nitrogen mineralization (and certainly, because of the large number of sinks, in patterns of phosphorus mineralization) following disturbance by natural events such as wind‐throw and fire, and by man‐made events such as logging and fertilizing. The long‐term disturbance by acid rain is a more complex matter since forest ecosystems are not adequate buffers for nitrate. Contents Summary 561 I. Introduction 562 II. Linking nutrient cycling to nutrient availability – Setting the themes 563 III. The nature of soil organic matter 566 IV. Tree roots and the availability of nutrients 566 V. The decomposition of forest litter 569 VI. Mineralization of organically‐bound nutrients 571 Acknowledgements 576 References 576

Từ khóa


Tài liệu tham khảo

10.1139/b82-277

Aber JD, 1991, Terrestrial ecosystems

10.1139/b90-287

10.1007/BF00378292

10.1016/0038-0717(86)90072-6

10.1016/0038-0717(86)90102-1

10.1016/0038-0717(90)90122-G

AdamsMA.1992.Phosphatase activity and phosphorus fractions in Karri(Eucalyptus diversicolorF. Muell.) forest soils.Biology and Fertility of Soils(in the press).

10.1016/0038-0717(82)90023-2

10.1016/0378-1127(84)90001-X

10.1071/BT9840217

10.1007/BF02372482

10.1007/BF02372483

10.1016/0378-1127(91)90002-D

AdamsMA AttiwillPM PolglasePJ.1989a.Availability of nitrogen and phosphorus in forest soils in northeastern.

Tasmania, Biology and Fertility of Soils, 8, 212

10.1016/0038-0717(89)90125-9

10.1016/0038-0717(89)90154-5

10.1007/BF00329765

10.1139/x83-073

10.2136/sssaj1972.03615995003600040044x

10.1016/0038-0717(81)90066-3

10.1016/0378-1127(88)90010-2

10.1007/BF02180318

Anderson VG, 1941, The origin of the dissolved inorganic solids in natural waters with special reference to the O'Shannassy River Catchment, Victoria, Journal of the Proceedings of the Australian Chemical Institute, 8, 130

10.1016/0038-0717(83)90012-3

10.1139/b81-297

10.1071/BT9760723

10.1007/BF01374047

10.2307/1933568

10.1071/BT9800199

Attiwill PM, 1981, Proc. Australian forest nutrition workshop: productivity in perpetuity, 131

Attiwill PM, 1991, Symposium on intensive forestry: the role of eucalypts, IUFRO P2.02‐01 productivity of eucalypts, 494

Attiwill PM, 1991, Ecosystem experiments, 193

10.1071/BT9780079

Attiwill PM, 1987, Forest soils and nutrient cycles

Baker TG, 1981, Proc. Australian forest nutrition workshop: productivity in perpetuity, 159

Baker TG, 1985, Loss of organic matter and elements from decomposing litter of Eucalyptus obliqua L'Herit. and Pinus radiata D. Don, Australian Forest Research, 15, 309

10.1016/0038-0717(83)90006-8

Ballard R, 1973, Use of soil testing for predicting phosphate fertilizer requirements of radiata pine at time of planting, New Zealand Journal of Forest Science, 4, 27

10.1007/BF01377744

10.1007/BF00010749

10.1071/BT9910357

10.1080/02827588609382428

10.1139/b84-345

10.1016/0378-1127(88)90054-0

10.1007/BF00016955

10.1007/BF00257583

10.1007/978-1-4613-8847-0_2

10.1016/S0065-2504(08)60086-0

10.2307/1938504

10.1007/BF00012037

10.1016/0038-0717(84)90023-3

10.1007/BF00003034

10.1007/978-1-4612-6232-9

10.2307/3544478

10.1016/0022-1694(82)90117-2

10.1007/BF01885274

Bowen GD, 1981, The biology of Australian plants, 33

10.1097/00010694-197801000-00008

10.1097/00010694-197802000-00006

10.1016/S0065-2504(08)60099-9

10.1071/BT9910445

10.1139/x86-054

10.1007/BF02377149

10.1111/j.1469-8137.1991.tb01046.x

10.1111/j.1365-2745.2005.01043.x

10.2307/1937083

10.2307/1941064

ColeDW.1981Nitrogen uptake and translocation by forest ecosystems. In:ClarkFE RosswallT eds.Terrestrial nitrogen cycles. Ecological Bulletins 33:219–232.

Cole DW, 1981, Dynamic properties of forest ecosystems, 341

10.1007/BF02180315

Comerford NB, 1988, Interaction of forest floor material and mineral soil on orthophosphate sorption, New Zealand Journal of Forestry Science, 18, 191

10.4141/cjss89-010

10.1111/j.1365-2389.1990.tb00043.x

10.1111/j.1469-8137.1991.tb01025.x

10.1071/PP9900503

10.1007/BF00379956

10.1016/0038-0717(89)90142-9

10.1007/BF02182686

10.1111/j.1365-3040.1989.tb01942.x

10.1111/j.1469-8137.1987.tb04890.x

10.1007/978-3-642-85587-0_14

Ebermayer E, 1876, Die gesammte Lehre der Waldstreu, mil Rücksichl auf die chemisette Statik des Waldbaues

Ellenberg VH, 1977, Stickstoff als standortsfactor. Insbesondere für mitteleuropaische Pflanzengesellschaften, Oecologia Plantarum, 12, 1

10.1007/BF02220695

10.1007/BF02374333

10.2136/sssaj1960.03615995002400040019x

10.1007/BF00003033

10.1111/j.1469-8137.1980.tb03189.x

10.1139/b77-190

10.2136/sssaj1990.03615995005400040037x

10.2136/sssaj1990.03615995005400060043x

10.1007/BF00000885

10.4141/cjss89-040

10.1007/BF02374754

10.1007/BF02377120

10.1007/BF02374725

10.2307/2937049

10.1016/0038-0717(90)90063-6

10.1016/0016-7037(55)90024-7

10.1007/BF00002942

10.1126/science.198.4323.1252

10.1007/BF01377368

10.1007/BF00012883

10.1071/BT9890137

10.1111/j.1469-8137.1982.tb03289.x

10.1016/0038-0717(89)90053-9

10.1071/BT9760681

10.2307/2258049

Halm BJ, 1972, Isotopes and radiation in soil‐plant relationships, including forestry, 571

Harley JL, 1983, Mycorrhizal symbiosis

10.1016/0378-1127(90)90111-N

10.1016/0038-0717(79)90053-1

10.1016/0038-0717(82)90003-7

10.1016/0038-0717(82)90004-9

10.1016/0038-0717(83)90124-4

10.1016/0038-0717(79)90054-3

10.1007/BF00001809

10.1111/j.1365-2389.1984.tb00257.x

10.1111/j.1469-8137.1983.tb03470.x

10.1007/BF01347237

Hetrick BAD, 1989, Nitrogen, phosphorus and sulphur utilisation by fungi, 205

10.1007/BF00001319

10.1007/BF02280176

10.1111/j.1399-3054.1979.tb01679.x

10.1016/0038-0717(89)90152-1

Jansson SL, 1958, Tracer studies on nitrogen transformations in soil with special reference to mineralization‐immobilization relationships. Kungl, Lantbrukshogskolans Annaler, 24, 101

10.1071/BT9670403

Jenkinson DS, 1987, Modelling the turnover of organic matter in long‐term experiments at Rothamsted, Intecol Bulletin, 15, 1

10.2134/jeq1992.00472425002100010001x

10.2136/sssaj1980.03615995004400030036x

10.1016/0038-0717(77)90016-5

Jordan CF, 1985, Nutrient cycling in tropical forest ecosystems: principles and their application to conservation and management

10.1086/283696

10.2134/jeq1992.00472425002100010002x

10.1097/00010694-198611000-00002

Keeney DR, 1980, Prediction of soil nitrogen availability in forest ecosystems: A literature review, Forest Science, 26, 159

10.1016/B978-0-12-325550-1.50015-X

10.2136/sssaj1977.03615995004100020035x

10.1007/BF02371147

10.1007/BF00346829

10.1111/j.1469-8137.1974.tb01327.x

10.1007/BF02860714

10.1071/BT9740681

Landsberg JJ, 1991, Evaluating progress toward closed models based on fluxes of carbon, water and nutrients, Advancing tozvard closed models of forest ecosystems. Tree Physiology, 9, 1

Lemee G, 1967, Investigations sur la mineralisation de I'azote et son evolution annuelle dans des humus forestiers in situ, Oecologia Plantarum, 2, 285

10.1007/978-1-4615-9993-7

10.1104/pp.85.2.315

10.1002/j.1537-2197.1978.tb06181.x

10.1002/j.1537-2197.1980.tb07777.x

10.1139/b78-335

10.4141/cjss86-056

10.1139/b87-350

10.1038/251316a0

10.1111/j.1469-8137.1982.tb03411.x

Marschner H, 1986, Mineral nutrition of higher plants

10.1007/BF02182688

Martin JK, 1983, Soils: an Australian viewpoint, 685

10.2307/1939130

Matson PA, 1981, Nitrification potentials following clearcutting in the Hoosier National Forest, Indiana, Forest Science, 27, 781

10.2307/1938454

McGill WB, 1981, Comparative aspects of cycling of organic C, N, S and P through soil organic matter, Geodenna, 26, 267

10.1007/BF00000884

10.2307/1936576

10.1080/02827588609382409

MelilloJM AberJD LinkinsAE RiccaA FryB NadelhoflferKJ.1989.Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter.Plant and Soil189–198.

10.2307/1936780

Miller HG, 1979, Nutrient cycles in pine and their adaptation to poor soils, Canadian Journal of Botany, 9, 19

Miller RB, 1963, Plant nutrients in hard beech. III. The cycle of nutrients, New Zealand Journal of Science, 6, 388

10.2307/1939201

10.1016/0378-1127(89)90037-6

Montes RA, 1979, Nitrification and succession in the piedmont of North Carolina, Forest Science, 25, 287

10.1007/BF00709655

10.1007/BF00017956

10.1139/x83-003

10.1007/BF02140039

10.2307/1939190

10.2307/1938918

10.1016/0038-0717(77)90022-0

10.1093/treephys/9.1-2.185

10.1080/00103628009367083

10.1007/BF01394645

10.2307/2260642

10.1016/0378-1127(88)90115-6

Odum HT, 1970, A tropical rainforest: a study of irradiation and ecology at El Verde, Puerto Rico

Orman HR, 1960, The nutrient content of Pinus radiata trees, New Zealand Journal of Science, 3, 510

10.1093/oxfordjournals.aob.a083650

10.1007/BF01666212

10.1016/0038-0717(86)90100-8

10.1139/x89-004

10.1139/x89-017

10.1016/0167-8809(91)90090-K

10.2136/sssaj1987.03615995005100050015x

10.1007/BF02180320

10.2307/1939478

10.1007/BF02205586

10.1016/B978-0-12-546805-3.50004-7

PaulEA JumaNG.1981Mineralization and immobilization of soil nitrogen by microorganisms. In:ClarkFE RosswallT eds.Terrestrial nitrogen cycles. Processes ecosystem strategies and management impacts. Ecological Bulletins (Stockholm) 33:179–195.

Persson H, 1984, State and change of forest ecosystems‐indicators in current research, 193

Pfadenhauer J, 1979, Die stickstoffmineralisation in Boden subtropischer regenwalder in Siidbrasilien, Oecologia Plantarum, 14, 27

10.1016/0378-1127(87)90070-3

10.1007/BF00010964

Polglase PJ, 1986, Immobilization of soil nitrogen following wildfire in two eucalypt forests of southeastern Australia, Oecologia Plantarum, 7, 261

10.1007/BF00010963

10.1007/BF00010964

10.2136/sssaj1992.03615995005600020037x

10.2136/sssaj1992.03615995005600020036x

10.2136/sssaj1980.03615995004400060037x

10.1071/BT9600038

10.2307/1938919

10.1097/00010694-198512000-00005

10.1016/0038-0717(87)90094-0

10.1016/0378-1127(79)90048-3

10.1080/03746607808685334

Read DJ, 1991, Frontiers in mycology, 101

Reichle DE., 1981, Dynamic properties of forest ecosystems

Remade J, 1977, Microbial transformation of nitrogen in forests, Oecologia Plantarum, 12, 33

Remezov NP, 1959, Method of studying the biological cycle of elements in forest, Pochvovedenie, 1959, 71

10.1007/BF01343546

Rennie PJ, 1957, The uptake of nutrients by timber forest and its importance to timber production in Britain, Quarterlv Journal of Forestry, 51, 101

10.1016/0038-0717(89)90135-1

Rice EL, 1974, Allelopathy

10.1002/j.1537-2197.1972.tb10183.x

10.1002/j.1537-2197.1973.tb05975.x

10.2307/2441927

10.2136/sssaj1986.03615995005000060017x

10.2307/1938880

10.1098/rstb.1982.0019

10.1007/BF00379093

10.2307/1936712

10.2136/sssaj1975.03615995003900060023x

10.1007/BF02859887

Sanchez PA, 1989, Dynamics of soil organic matter in tropical ecosystems, 125

10.1007/978-94-009-2348-5_4

10.1007/978-1-4612-3144-8_1

10.2136/sssaj1989.03615995005300030025x

10.1128/AEM.48.4.802-806.1984

10.1016/0038-0717(89)90044-8

10.1146/annurev.es.08.110177.000411

Schulze E. ‐D, 1991, Ecosystem experiments, 89

10.1104/pp.73.3.761

10.1016/0016-7061(85)90001-1

10.1016/0038-0717(79)90027-0

10.1111/j.1469-8137.1990.tb00370.x

10.2307/1934820

10.1139/b82-199

10.1007/BF00002943

10.1007/BF00010752

10.2307/1936571

Stark N, 1977, Root biomass and nutrient storage in rain forest oxisols near San Carlos de Rio Negro, Tropical Ecology, 18, 1

Stevenson FJ, 1989, Dynamics of soil organic matter in tropical ecosystems, 173

10.1016/0378-1127(90)90022-4

10.1007/BF02202588

10.1007/BF02187361

Stone EL, 1979, Proceedings, impact of intensive harvesting on forest nutrient cycling, 366

10.1016/0378-1127(91)90245-Q

10.1128/AEM.52.5.1107-1111.1986

Swift MJ, 1979, Decomposition in terrestrial ecosystems

10.2136/sssaj1972.03615995003600010033x

10.1016/0038-0717(69)90012-1

Tamm CO, 1979, Proceedings, impact of intensive harvesting on forest nutrient cycling, 2

10.2307/2259385

10.2307/1930070

10.1007/BF02180319

10.2307/1939186

Tinker PB, 1975, Endomvcorrhizas, 353

10.1016/0048-9697(89)90151-4

Turner J, 1977, Effect of nitrogen availability on nitrogen cycling in a Douglas‐fir stand, Forest Science, 23, 307

10.1080/00103628509367602

10.1007/BF00377124

10.1093/oxfordjournals.aob.a085239

Ulrich B, 1981, Dynamic properties of forest ecosystems, 265

10.1144/gsjgs.143.4.0659

10.2136/sssaj1987.03615995005100060041x

10.1139/x76-018

10.2136/sssaj1985.03615995004900050041x

Viro PJ, 1953, Loss of nutrients and the natural nutrient balance of the soil in Finland, Communicationes Instituti Forestalls Fenniae, 42, 1

10.1086/283931

10.1007/BF00378778

10.1007/BF02180316

10.1007/BF00002772

10.1126/science.225.4657.51

Vitousek PM, 1985, Causes of delayed nitrate production in two Indiana forests, Forest Science, 31, 122

10.2307/1939189

10.1016/0038-0717(88)90017-X

10.1007/BF02202591

10.2307/2387651

Vogt KA, 1991, Carbon cycling in temperate forest ecosystems, Advancing toward closed models of forest ecosystems. Tree Physiology, 9, 69

10.1139/x81-031

10.1016/S0065-2504(08)60122-1

10.2307/1941561

10.1007/BF00002876

10.1016/0038-0717(87)90053-8

10.1016/0016-7061(76)90066-5

10.1007/BF00324628

10.1007/BF00257586

10.1007/BF00257585

10.2307/1941663

10.1007/BF00002625

10.1080/00288233.1959.10422832

10.1093/forestry/45.2.177

Witherspoon JP, 1963, Proc. 1st Nat. Symp. on radioecology

10.2307/1933765

10.1007/BF02202590

Wollum AG, 1975, Forest soils and forest land management, 67

10.1126/science.223.4634.391

Woodwell GM, 1967, Symposium on primary productivity and mineral cycling in natural ecosystems, 151

10.1093/forestry/31.1.13