Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy

Scientific Reports - Tập 11 Số 1
Qiu‐Hong Shi1, Aamir Hamid2, M. Ijaz Khan3, R. Naveen Kumar4, R. J. Punith Gowda4, B. C. Prasannakumara4, Nehad Ali Shah5, Sami Ullah Khan6, Jae Dong Chung5
1Department of Mathematics, Huzhou University, Huzhou, 313000, People's Republic of China
2Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
3Department of Mathematics and Statistics, Riphah International University I-14, Islamabad 44000, Pakistan
4Department of Studies and Research in Mathematics, Davangere University, Davangere, Karnataka, India
5Department of Mechanical Engineering, Sejong University, Seoul 05006, Korea
6Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan

Tóm tắt

AbstractIn this study, a mathematical model is developed to scrutinize the transient magnetic flow of Cross nanoliquid past a stretching sheet with thermal radiation effects. Binary chemical reactions and heat source/sink effects along with convective boundary condition are also taken into the consideration. Appropriate similarity transformations are utilized to transform partial differential equations (PDE’s) into ordinary ones and then numerically tackled by shooting method. The impacts of different emerging parameters on the thermal, concentration, velocity, and micro-rotation profiles are incorporated and discussed in detail by means of graphs. Results reveal that, the escalation in magnetic parameter and Rayleigh number slowdowns the velocity and momentum of the fluid. The increase in Biot number, radiation and heat sink/source parameters upsurges the thermal boundary but, converse trend is seen for escalating Prandtl number. The density number of motile microorganisms acts as a growing function of bioconvection Lewis number and declining function of bioconvection Peclet number.

Từ khóa


Tài liệu tham khảo

Khan, M. I., Hayat, T., Khan, M. I. & Alsaedi, A. Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid. Int. Commun. Heat Mass Transf. 91, 216–224. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.001 (2018).

Ali, M. et al. Computational analysis of entropy generation for cross-nanofluid flow. Appl. Nanosci. 10(8), 3045–3055. https://doi.org/10.1007/s13204-019-01038-w (2020).

Abbas, S. Z. et al. Mathematical modeling and analysis of cross nanofluid flow subjected to entropy generation. Appl. Nanosci. 10(8), 3149–3160. https://doi.org/10.1007/s13204-019-01039-9 (2020).

Xiong, P.-Y. et al. Dynamics of multiple solutions of Darcy–Forchheimer saturated flow of cross nanofluid by a vertical thin needle point. Eur. Phys. J. Plus 136(3), 315. https://doi.org/10.1140/epjp/s13360-021-01294-2 (2021).

Hamid, A. et al. Critical values in axisymmetric flow of magneto-cross nanomaterial towards a radially shrinking disk. Int. J. Mod. Phys. B 35(07), 2150105. https://doi.org/10.1142/S0217979221501058 (2021).

Hayat, T., Qasim, M. & Mesloub, S. MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int. J. Numer. Methods Fluids 66(8), 963–975. https://doi.org/10.1002/fld.2294 (2011).

Senapati, M., Swain, K. & Parida, S. Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet. Karbala Int. J. Mod. Sci. https://doi.org/10.33640/2405-609X.1462 (2020).

Patil, V. S., Patil, A. B., Ganesh, S., Humane, P. P. & Patil, N. S. Unsteady MHD flow of a nano Powell–Eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.11.860 (2021).

Uddin, I., Ullah, I., Ali, R., Khan, I. & Nisar, K. S. Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl–Eyring nanofluids in the presence of activation energy and Joule heating. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-020-09574-2 (2020).

Nayak, M. K. et al. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport. Comput. Methods Programs Biomed. 186, 105131. https://doi.org/10.1016/j.cmpb.2019.105131 (2020).

Khan, M., Irfan, M., Khan, W. A. & Alshomrani, A. S. A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results Phys. 7, 2692–2704. https://doi.org/10.1016/j.rinp.2017.07.024 (2017).

Hashim, A., Hamid, M. K. & Khan, U. Thermal radiation effects on Williamson fluid flow due to an expanding/contracting cylinder with nanomaterials: Dual solutions. Phys. Lett. A 382(30), 1982–1991. https://doi.org/10.1016/j.physleta.2018.04.057 (2018).

Ali, U., Malik, M. Y., Alderremy, A. A., Aly, S. & Rehman, K. U. A generalized findings on thermal radiation and heat generation/absorption in nanofluid flow regime. Phys. Stat. Mech. Appl. 553, 124026. https://doi.org/10.1016/j.physa.2019.124026 (2020).

Gnaneswara Reddy, M., Punith Gowda, R., Naveen Kumar, R., Prasannakumara, B. & Ganesh Kumar, K. Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. https://doi.org/10.1177/09544089211001353 (2021).

Xiong, P.-Y. et al. Comparative analysis of (Zinc ferrite, Nickel Zinc ferrite) hybrid nanofluids slip flow with entropy generation. Mod. Phys. Lett. B https://doi.org/10.1142/S0217984921503425 (2021).

Merkin, J. H. Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15(5), 392–398. https://doi.org/10.1016/0142-727X(94)90053-1 (1994).

Rasool, G. et al. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 22(1), 1. https://doi.org/10.3390/e22010018 (2020).

Wang, J. et al. Entropy optimized stretching flow based on non-Newtonian radiative nanoliquid under binary chemical reaction. Comput. Methods Programs Biomed. 188, 105274. https://doi.org/10.1016/j.cmpb.2019.105274 (2020).

Punith Gowda, R. J. et al. Computational modelling of nanofluid flow over a curved stretching sheet using Koo–Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model. Chaos Solitons Fractals 145, 110774. https://doi.org/10.1016/j.chaos.2021.110774 (2021).

Ijaz Khan, M. & Alzahrani, F. Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations. Int. J. Mod. Phys. B 34(13), 2050132. https://doi.org/10.1142/S0217979220501325 (2020).

Khan, M., Salahuddin, T., Malik, M. Y., Alqarni, M. S. & Alqahtani, A. M. Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution. Phys. Stat. Mech. Appl. 553, 124231. https://doi.org/10.1016/j.physa.2020.124231 (2020).

Chu, Y.-M. et al. Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis. Int. Commun. Heat Mass Transf. 118, 104893. https://doi.org/10.1016/j.icheatmasstransfer.2020.104893 (2020).

Al-Khaled, K., Khan, S. U. & Khan, I. Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation. Heliyon 6(1), e03117. https://doi.org/10.1016/j.heliyon.2019.e03117 (2020).

Hashem Zadeh, S. M., Mehryan, S. A. M., Sheremet, M. A., Izadi, M. & Ghodrat, M. Numerical study of mixed bio-convection associated with a micropolar fluid. Therm. Sci. Eng. Prog. 18, 100539. https://doi.org/10.1016/j.tsep.2020.100539 (2020).

Waqas, H., Khan, S. U., Shehzad, S. A., Imran, M. & Tlili, I. Activation energy and bioconvection aspects in generalized second-grade nanofluid over a Riga plate: A theoretical model. Appl. Nanosci. 10(12), 4445–4458. https://doi.org/10.1007/s13204-020-01332-y (2020).

Khan, M. I., Kadry, S., Chu, Y. M., Khan, W. A. & Kumar, A. Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial. J. Mater. Resear. Technol. 9, 10265–10275 (2020).

Turkyilmazoglu, M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Int. J. Mech. Sci. 77, 263–268 (2013).

Mabood, F., Khan, S. U. & Tlili, I. Numerical simulations for swimming of gyrotactic microorganisms with Williamson nanofluid featuring Wu’s slip, activation energy and variable thermal conductivity. Appl. Nanosci. https://doi.org/10.1007/s13204-020-01548-y (2020).