Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy
Tóm tắt
Từ khóa
Tài liệu tham khảo
Khan, M. I., Hayat, T., Khan, M. I. & Alsaedi, A. Activation energy impact in nonlinear radiative stagnation point flow of cross nanofluid. Int. Commun. Heat Mass Transf. 91, 216–224. https://doi.org/10.1016/j.icheatmasstransfer.2017.11.001 (2018).
Ali, M. et al. Computational analysis of entropy generation for cross-nanofluid flow. Appl. Nanosci. 10(8), 3045–3055. https://doi.org/10.1007/s13204-019-01038-w (2020).
Abbas, S. Z. et al. Mathematical modeling and analysis of cross nanofluid flow subjected to entropy generation. Appl. Nanosci. 10(8), 3149–3160. https://doi.org/10.1007/s13204-019-01039-9 (2020).
Xiong, P.-Y. et al. Dynamics of multiple solutions of Darcy–Forchheimer saturated flow of cross nanofluid by a vertical thin needle point. Eur. Phys. J. Plus 136(3), 315. https://doi.org/10.1140/epjp/s13360-021-01294-2 (2021).
Hamid, A. et al. Critical values in axisymmetric flow of magneto-cross nanomaterial towards a radially shrinking disk. Int. J. Mod. Phys. B 35(07), 2150105. https://doi.org/10.1142/S0217979221501058 (2021).
Hayat, T., Qasim, M. & Mesloub, S. MHD flow and heat transfer over permeable stretching sheet with slip conditions. Int. J. Numer. Methods Fluids 66(8), 963–975. https://doi.org/10.1002/fld.2294 (2011).
Senapati, M., Swain, K. & Parida, S. Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet. Karbala Int. J. Mod. Sci. https://doi.org/10.33640/2405-609X.1462 (2020).
Patil, V. S., Patil, A. B., Ganesh, S., Humane, P. P. & Patil, N. S. Unsteady MHD flow of a nano Powell–Eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2020.11.860 (2021).
Uddin, I., Ullah, I., Ali, R., Khan, I. & Nisar, K. S. Numerical analysis of nonlinear mixed convective MHD chemically reacting flow of Prandtl–Eyring nanofluids in the presence of activation energy and Joule heating. J. Therm. Anal. Calorim. https://doi.org/10.1007/s10973-020-09574-2 (2020).
Nayak, M. K. et al. Entropy optimized MHD 3D nanomaterial of non-Newtonian fluid: A combined approach to good absorber of solar energy and intensification of heat transport. Comput. Methods Programs Biomed. 186, 105131. https://doi.org/10.1016/j.cmpb.2019.105131 (2020).
Khan, M., Irfan, M., Khan, W. A. & Alshomrani, A. S. A new modeling for 3D Carreau fluid flow considering nonlinear thermal radiation. Results Phys. 7, 2692–2704. https://doi.org/10.1016/j.rinp.2017.07.024 (2017).
Hashim, A., Hamid, M. K. & Khan, U. Thermal radiation effects on Williamson fluid flow due to an expanding/contracting cylinder with nanomaterials: Dual solutions. Phys. Lett. A 382(30), 1982–1991. https://doi.org/10.1016/j.physleta.2018.04.057 (2018).
Ali, U., Malik, M. Y., Alderremy, A. A., Aly, S. & Rehman, K. U. A generalized findings on thermal radiation and heat generation/absorption in nanofluid flow regime. Phys. Stat. Mech. Appl. 553, 124026. https://doi.org/10.1016/j.physa.2019.124026 (2020).
Gnaneswara Reddy, M., Punith Gowda, R., Naveen Kumar, R., Prasannakumara, B. & Ganesh Kumar, K. Analysis of modified Fourier law and melting heat transfer in a flow involving carbon nanotubes. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. https://doi.org/10.1177/09544089211001353 (2021).
Xiong, P.-Y. et al. Comparative analysis of (Zinc ferrite, Nickel Zinc ferrite) hybrid nanofluids slip flow with entropy generation. Mod. Phys. Lett. B https://doi.org/10.1142/S0217984921503425 (2021).
Merkin, J. H. Natural-convection boundary-layer flow on a vertical surface with Newtonian heating. Int. J. Heat Fluid Flow 15(5), 392–398. https://doi.org/10.1016/0142-727X(94)90053-1 (1994).
Rasool, G. et al. Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 22(1), 1. https://doi.org/10.3390/e22010018 (2020).
Wang, J. et al. Entropy optimized stretching flow based on non-Newtonian radiative nanoliquid under binary chemical reaction. Comput. Methods Programs Biomed. 188, 105274. https://doi.org/10.1016/j.cmpb.2019.105274 (2020).
Punith Gowda, R. J. et al. Computational modelling of nanofluid flow over a curved stretching sheet using Koo–Kleinstreuer and Li (KKL) correlation and modified Fourier heat flux model. Chaos Solitons Fractals 145, 110774. https://doi.org/10.1016/j.chaos.2021.110774 (2021).
Ijaz Khan, M. & Alzahrani, F. Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid: Numerical computations. Int. J. Mod. Phys. B 34(13), 2050132. https://doi.org/10.1142/S0217979220501325 (2020).
Khan, M., Salahuddin, T., Malik, M. Y., Alqarni, M. S. & Alqahtani, A. M. Numerical modeling and analysis of bioconvection on MHD flow due to an upper paraboloid surface of revolution. Phys. Stat. Mech. Appl. 553, 124231. https://doi.org/10.1016/j.physa.2020.124231 (2020).
Chu, Y.-M. et al. Significance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis. Int. Commun. Heat Mass Transf. 118, 104893. https://doi.org/10.1016/j.icheatmasstransfer.2020.104893 (2020).
Al-Khaled, K., Khan, S. U. & Khan, I. Chemically reactive bioconvection flow of tangent hyperbolic nanoliquid with gyrotactic microorganisms and nonlinear thermal radiation. Heliyon 6(1), e03117. https://doi.org/10.1016/j.heliyon.2019.e03117 (2020).
Hashem Zadeh, S. M., Mehryan, S. A. M., Sheremet, M. A., Izadi, M. & Ghodrat, M. Numerical study of mixed bio-convection associated with a micropolar fluid. Therm. Sci. Eng. Prog. 18, 100539. https://doi.org/10.1016/j.tsep.2020.100539 (2020).
Waqas, H., Khan, S. U., Shehzad, S. A., Imran, M. & Tlili, I. Activation energy and bioconvection aspects in generalized second-grade nanofluid over a Riga plate: A theoretical model. Appl. Nanosci. 10(12), 4445–4458. https://doi.org/10.1007/s13204-020-01332-y (2020).
Khan, M. I., Kadry, S., Chu, Y. M., Khan, W. A. & Kumar, A. Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial. J. Mater. Resear. Technol. 9, 10265–10275 (2020).
Turkyilmazoglu, M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Int. J. Mech. Sci. 77, 263–268 (2013).