Numerical radius inequalities of sectorial matrices

Springer Science and Business Media LLC - Tập 14 - Trang 1-17 - 2023
Pintu Bhunia1, Kallol Paul2, Anirban Sen2
1Department of Mathematics, Indian Institute of Science, Bengaluru, India
2Department of Mathematics, Jadavpur University, Kolkata, India

Tóm tắt

We obtain several upper and lower bounds for the numerical radius of sectorial matrices. We also develop several numerical radius inequalities of the sum, product and commutator of sectorial matrices. The inequalities obtained here are sharper than the existing related inequalities for general matrices. Among many other results we prove that if A is an $$n\times n$$ complex matrix with the numerical range W(A) satisfying $$W(A)\subseteq \{re^{\pm i\theta }~:~\theta _1\le \theta \le \theta _2\},$$ where $$r>0$$ and $$\theta _1,\theta _2\in \left[ 0,\pi /2\right] ,$$ then $$\begin{aligned}{} & {} \mathrm{(i)}\quad w(A) \ge \frac{csc\gamma }{2}\Vert A\Vert + \frac{csc\gamma }{2}\left| \Vert \Im (A)\Vert -\Vert \Re (A)\Vert \right| ,\,\,\text {and}\\{} & {} \mathrm{(ii)}\quad w^2(A) \ge \frac{csc^2\gamma }{4}\Vert AA^*+A^*A\Vert + \frac{csc^2\gamma }{2}\left| \Vert \Im (A)\Vert ^2-\Vert \Re (A)\Vert ^2\right| , \end{aligned}$$ where $$\gamma =\max \{\theta _2,\pi /2-\theta _1\}$$ . We also prove that if A, B are sectorial matrices with sectorial index $$\gamma \in [0,\pi /2)$$ and they are double commuting, then $$w(AB)\le \left( 1+\sin ^2\gamma \right) w(A)w(B).$$

Tài liệu tham khảo

Abu Sammour, S., Kittaneh, F., Sababheh, M.: A geometric approach to numerical radius inequalities. Linear Algebra Appl. 652, 1–17 (2022) Bag, S., Bhunia, P., Paul, K.: Bounds of numerical radius of bounded linear operators using \(t\)-Aluthge transform. Math. Inequal. Appl. 23(3), 991–1004 (2020) Bedrani, Y., Kittaneh, F., Sababheh, M.: Numerical radii of accretive matrices. Linear Multilinear Algebra 69(5), 957–970 (2020) Bedrani, Y., Kittaneh, F., Sababheh, M.: From positive to accretive matrices. Positivity 25(4), 1601–1629 (2021) Bhunia, P., Paul, K.: New upper bounds for the numerical radius of Hilbert space operators. Bull. Sci. Math. 167, 102959 (2021) Bhunia, P., Paul, K.: Development of inequalities and characterization of equality conditions for the numerical radius. Linear Algebra Appl. 630, 306–315 (2021) Bhunia, P., Paul, K.: Furtherance of numerical radius inequalities of Hilbert space operators. Arch. Math. (Basel) 117(5), 537–546 (2021) Bhunia, P., Paul, K.: Refinements of norm and numerical radius inequalities. Rocky Mt. J. Math. 51(6), 1953–1965 (2021) Bhunia, P., Paul, K.: Proper improvement of well-known numerical radius inequalities and their applications. Results Math. 76(4), 177 (2021) Bhunia, P., Paul, K., Nayak, R.K.: Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices. Math. Inequal. Appl. 24(1), 167–183 (2021) Bhunia, P., Dragomir, S.S., Moslehian, M.S., Paul, K.: Lectures on Numerical Radius Inequalities. Infosys Science Foundation Series in Mathematical Sciences. Springer, Cham (2022). (ISBN: 978-3-031-13669-6; 978-3-031-13670-2) Drury, S.: Principal powers of matrices with positive definite real part. Linear Multilinear Algebra 63, 296–301 (2015) Fong, C.-K., Holbrook, J.A.R.: Unitarily invariant operator norms. Can. J. Math. 35, 274–299 (1983) Garling, D.J.H., Tomczak-Jaegermann, N.: The cotype and uniform convexity of unitary ideals. Isr. J. Math. 45, 175–197 (1983) Gustafson, K.E., Rao, D.K.M.: Numerical Range. The Field of Values of Linear Operators and Matrices. Springer, New York (1997) Hirzallah, O., Kittaneh, F.: Numerical radius inequalities for several operators. Math. Scand. 114(1), 110–119 (2014) Kato, T.: Perturbation Theory for Linear Operators. Springer, New York (1986) Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Stud. Math. 158(1), 11–17 (2003) Kittaneh, F.: Numerical radius inequalities for Hilbert spaces operators. Stud. Math. 168, 73–80 (2005) Masser, D.W., Neumann, M.: On the square roots of strictly quasiaccretive complex matrices. Linear Algebra Appl. 28, 135–140 (1979) Mirman, B.A.: The numerical range of a linear operator, and its norm. Voronež. Gos. Univ. Trudy Sem. Funkcional. Anal. Vyp. 10, 51–55 (1968). (Russian) Najafi, H.: Some numerical radius inequality for several operators. Linear Algebra Appl. 588, 489–496 (2020) Omidvar, M.E., Moradi, H.R.: Better bounds on the numerical radii of Hilbert space operators. Linear Algebra Appl. 604, 265–277 (2020) Taylor, A.E.: Introduction to Functional Analysis. Wiley, New York (1958)