Numerical models of slab migration in continental collision zones

Solid Earth - Tập 3 Số 2 - Trang 293-306
Valentina Magni1,2, Jeroen van Hunen3, Francesca Funiciello2, Claudio Faccenna2
1Alma Mater Studiorum, Università di Bologna, Dipartimento di Geofisica, V.le Berti Pichat 8, 40127, Bologna, Italy
2Università Roma Tre, Dipartimento di Scienze Geologiche, L.go S. Leonardo Murialdo 1, 00146, Rome, Italy
3Durham University, Department of Earth Sciences, Durham DH1 3LE, UK

Tóm tắt

Abstract. Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed). This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.

Từ khóa


Tài liệu tham khảo

Ballmer, M. D., vanHunen, J., Ito, G., Tackley, P. J., and Bianco, T. A.: Non-hotspot volcano chains originating from small-scale sublithospheric convection, Geophys. Res. Lett., 34, L23310, https://doi.org/10.1029/2007GL031636, 2007.

Beaumont, C., Ellis, S., Hamilton, J., and Fullsack, P.: Mechanical model for subduction-collision tectonics of Alpine-type compressional orogens. Geology, 24, 675–678, 1996.

Becker, T. W. and Faccenna, C.: Mantle conveyor beneath the Tethyan collisional belt, Earth Planet. Sci. Lett., 310, 453–461, 2011.

Bellahsen, N., Faccenna, C., and Funiciello, F.: Dynamics of subduction and plate motion in laboratory experiments: insights into the "plate tectonics" behavior of the Earth, J. Geophys. Res., 110, B01401, https://doi.org/10.1029/2004JB002999, 2005.

Bialas, R. W., Funiciello, F., and Faccenna, C.: Subduction and exhumation of continental crust: insights from laboratory models, Geophys. J. Int., 184, 43–64, 2010.

Billen, M. I. and Gurnis, M.: A low viscosity wedge in subduction zones, Earth Planet. Sci. Lett., 193, 227–236, 2001.

Brun, J. P. and Faccenna, C.: Exhumation of high-pressure rocks driven by slab rollback, Earth Planet. Sci. Lett., 272, 1–7, 2008.

Byerlee, J. D.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.

Cande, C. and Stegman, D. R.: Indian and African plate motions driven by the push force of the Réunion plume head, Nature, 475, 47–52, 2011.

Capitanio, F., Morra, G., Goes, S., Weinberg, R. F., and Moresi, L.: India–Asia convergence driven by the subduction of the Greater Indian continent, Nat. Geosci., 3, 136–139, 2010a.

Capitanio, F. A., Stegman, D. R., Moresi, L. N., and Sharples, W.: Upper plate controls on deep subduction, trench migrations and deformations at convergent margins, Tectonophysics, 483, 80–92, 2010b.

Carlson, R. L. and Melia, P. J.: Subduction hinge migration, edited by: Carlson, R. L. and Kobayashi, K., Tectonophysics, 102, 1–16, 1984.

Carminati, E., Wortel, M. J. R., Spakman, W., and Sabadini, R.: The role of slab detachment processes in the opening of the western-central Mediterranean basins: some geological and geophysical evidence, Earth Planet. Sci. Lett., 160, 651–655, 1998.

Chemenda, A. I., Burg, J. P., and Mattauer, M.: Evolutionary model of the Himalaya-Tibet system: Geopoem based on new modelling, geological and geophysical data, Earth Planet. Sci. Lett., 174, 397–409, 2000.

Chemenda, A. I., Mattauer, M., and Bokun, A. N.: Continental Subduction and a mechanism for exhumation of highpressure metamorphic rocks: new modeling and field data from Oman, Earth Planet. Sci. Lett., 143, 173–182, 1996.

Cloos, M. N.: Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges and seamounts, Geol. Soc. Am. Bull., 105, 715–737, 1993.

Conrad, C. P. and Lithgow-Bertelloni C.: How mantle slabs drive plate tectonics, Science, 298, 207–209, 2002.

Davies, J. H. and von Blanckenburg, F.: Slab breakoff: A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens, Earth Planet. Sci. Lett., 129, 85–102, 1995.

De Franco, R., Govers, R., and Wortel, R.: Dynamics of continental collision: influence of the plate contact, Geophys. J. Int., 174, 1101–1120, 2008.

Di Giuseppe, E., Faccenna, C., Funiciello, F., van Hunen, J., and Giardini, D.: On the relation between trench migration, seafloor age, and the strength of the subducting lithosphere, Lithosphere, 1, 121–128, 2009.

Di Giuseppe, E., van Hunen, J., Funiciello, F., Faccenna, C., and Giardini, D.: Slab stiffness control of trench motion: insights from numerical models, Geochem. Geophys. Geosyst., 9, Q02014, https://doi.org/10.1029/2007GC001776, 2008.

Duretz, T., Gerya, T. V., and May, D. A.: Numerical modelling of spontaneous slab breakoff and subsequent topographic response, Tectonophysics, 502, 244–256, 2010.

Elsasser, W. M.: Convection and stress propagation in the upper mantle, The Application of Modern Physics to the Earth and Planetary Interiors, edited by: Runcorn, S. K., 223–246, Wiley-Interscience, New York, 1969.

Enns, A., Becker, T. W., and Schmeling, H.: The dynamics of subduction and trench migration for viscosity stratification, Geophys. J. Int., 160, 761–775, 2005.

Faccenna, C., Becker, T. W., Lucente, F. P., and Rossetti, F.: History of subduction and back-arc extension in the central Mediterranean, Geophys. J. Intern., 145, 1–21, 2001.

Faccenna, C., Bellier, O., Martinod, J., Piromallo, C., and Regard, V.: Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault, Earth Planet. Sci. Lett., 242, 85–97, 2006.

Faccenna, C., Piromallo, C., Crespo-Blanc, A., Jolivet, L., and Rossetti, F.: Lateral slab deformation and the origin of the western Mediterranean arcs, Tectonics, 23, TC1012, https://doi.org/10.1029/2002TC001488, 2004.

Ferrari, L.: Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico, Geology, 32, 77–80, 2004.

Forsyth, D. W. and Uyeda, S.: On the relative importance of the driving forces of plate motion, Geophys. J. R. Astr. Soc., 43, 163–200, 1975.

Funiciello, F., Faccenna, C., Giardini, D., and Regenauer-Lieb, K.: Dynamics of retreating slabs (part 2): insights from 3D laboratory experiments, J. Geophys. Res., 108, 2207, https://doi.org/10.1029/2001JB000896, 2003a.

Funiciello, F., Morra, G., Regenauer-Lieb, K., and Giardini, D.: Dynamics of retreating slabs (part 1): insights from numerical experiments, J. Geophys. Res., 108, 2206, https://doi.org/10.1029/2001JB000898, 2003b.

Garfunkel, Z., Anderson, C. A., and Schubert, G.: Mantle circulation and the lateral migration of subducted slabs, J. Geophys. Res., 91, 7205–7223, 1986.

Gogus, O. H., Pysklywec, R. N., Corbi, F., and Faccenna, C.: The surface tectonics of mantle lithosphere delamination following ocean lithosphere subduction: Insights from physical-scaled analogue experiments, Geochem. Geophy. Geosyst., 12, Q05004, https://doi.org/10.1029/2010GC003430, 2011.

Guillot, S., Garzanti, E., Baratoux, D., Marquer, D., Maheo, G., and de Sigoyer, J.: Reconstructing the total shortening history of the NW Himalaya, Geochem. Geophys. Geosyst., 4, 1064, https://doi.org/10.1029/2002GC000484, 2003.

Hafkenscheid, E., Wortel, M. J. R., and Spakman, W.: Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions, J. Geophys. Res., 111, B08401, https://doi.org/10.1029/2005JB003791, 2006.

Hall, R. and Spakman, W.: Subducted slabs beneath the eastern Indonesia-Tonga region: insights from tomography, Earth Planet. Sc. Lett., 201, 321–336, 2002.

Hall, R.: Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations, J. Asian Earth Sci., 20, 353–431, 2002.

Hatzfeld, D. and Molnar, P.: Comparison of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Rev. Geophis., 48, 1–48, 2010.

Heuret, A. and Lallemand, S.: Plate motions, slab dynamics and back-arc deformation. Phys. Earth Planet. Inter., 149, 31–51, 2005.

Hirth, G. and Kohlstedt, D. L.: The rheology of the upper mantle wedge: a view from experimentalists. The Subduction Factory, American Geophysical Union, Washington D. C, 83–105, 2003.

Jarrard, R. D.: Relations among subduction parameters, Rev. Geophys., 24, 217–284, 1986.

Karato, S. and Wu, P.: Rheology of the upper mantle: a synthesis, Science, 260, 771–778, 1993.

Kerr, A. C. and Tarney, J.: Tectonic evolution of the caribbean and northwestern south america: the case for accretion of two late cretaceous oceanic plateaus, Geology, 33, 269–272, 2005.

Keskin, M.: Magma generation by slab steepening and breakoff beneath subduction-accretion complex: an alternative model for collision-related volcanism in Eastern Anatolia, Turkey, Geophys. Res. Lett., 30, 1–4, 2003.

Knesel, K. M., Cohen, B. E., Vasconcelos, P. M., and Thiede, D. .: Rapid change in drift of the Australian plate records collision with Ontong Java plateau, Nature, 454, 754–757, 2008.

Korenaga, J. and Karato, S. I.: A new analysis of experimental data on olivine rheology., J. Geophys. Res., 113, B02403, https://doi.org/10.1029/2007JB005100, 2008.

Lei, J. and Zhao, D.: Teleseismic evidence for a break-off subducting slab under Eastern Turkey, Earth Planet. Sci. Lett., 257, 14–28, 2007.

Li, C., van der Hilst, R. D., Meltzer, A. S., and Engdahl, E. R.: Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma, Earth Planet. Sci. Lett., 274, 157–168, 2008.

Lucente, F. P., Chiarabba, C., Cimini, G. B., and Giardini, D.: Tomographic constraints on the geodynamic evolution of the italian region, J. Geophys. Res., 104, 20307–20327, 1999.

Mann, P. and Taira, A.: Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone, Tectonophysics, 389, 137–190, 2004.

Matte, P., Mattauer, M., Jolivet, J. M., and Griot, D. A.: Continental subductions beneath Tibet and the Himalayan orogeny: a review, Terra Nova, 9, 264–270, 1997.

McKenzie, D. P.: Speculations on the Consequences and Causes of Plate Motions, Geophys. J. R. Astr. Soc., 18, 1–32, 1969.

Moresi, L. N. and Gurnis, M.: Constraints on the lateral strength of slabs from three dimensional dynamic flow models, Earth Planet. Sci. Lett., 138, 15–28, 1996.

Petterson, M. G., Neal, C. R., Mahoney, J. J., Kroenke, L. W., Saunders, A. D., Babbs, T. L., Duncan, R. A., Tolia, D., and McGrail, B.: Structure and deformation of north and central Malaita, Solomon Islands: tectonic implications for the Ontong Java Plateau-Solomon arc collision, and for the fate of oceanic plateaus, Tectonophysics, 283, 1–33, 1997.

Piromallo, C. and Faccenna, C.: How deep can we find the traces of Alpine subduction?, Geoph. Res. Lett., 31, L06605, https://doi.org/10.1029/ 2003GL019288, 2004.

Piromallo, C. and Morelli, A.: P-wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108, 2065, https://doi.org/10.1029/2002JB001757, 2003.

Qin, J., Lao, S., and Li, Y.: Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling Orogen, Central China: zircon U–Pb Ages, geochemistry, and Sr–Nd–Pb isotopic constraints, Intern. Geol. Rev., 50, 1080–1104, 2008.

Ranalli, G., Pellegrini, R., D'Offizi, S., Time dependence of negative buoyancy and subduction of continental lithosphere, J. Geodynam., 30, 539–555, 2000.

Regard, V., Faccenna, C., Bellier, O., and Martinod, J.: Laboratory experiments of slab break-off and slab dip reversal: insight into the Alpine Oligocene reorganization, Terra Nova, 20, 267–273, 2008.

Regard, V., Faccenna, C., Martinod, J., Bellier, O., and Thomas, J.-C.: From subduction to collision: control of deep processes on the evolution of convergent plate boundary, J. Geophys. Res., 108, 2208, https://doi.org/10.1029/2002JB001943, 2003.

Replumaz, A., Kárason, H., van der Hilst, R. D., Besse, J., and Tapponnier, P.: 4-D evolution of SE Asia's mantle from geological reconstructions and seismic Tomography, Earth Planet. Sci. Lett., 221, 103–115, 2004.

Replumaz, A., Negredo, A. M., Villaseñor, A., and Guillot, S.: Indian continental subduction and slab break-off during Tertiary collision, Terra Nova, 22, 290–296, 2010.

Royden., L. H.: The tectonic expression slab pull at continental convergent boundaries, Tectonics, 12, 303–325, 1993.

Spakman, W. and Wortel, R.: A tomographic view on western Mediterranean geodynamics, in: The TRANSMED Atlas: The Mediterranean region from crust to mantle, edited by: Cavazza, W., Roure F., Spakman W., Stampfli G. M., and Ziegler, P., Springer, Berlin, Heidelberg, New York, 31–52, 2004.

Stegman, D. R., Freeman, J., Schellart, W. P., Moresi, L., and May, D.: Influence of trench width on subduction hinge retreat rates in 3-D models of slab rollback, Geochem. Geophys. Geosyst., 7, Q03012, https://doi.org/10.1029/2005GC001056, 2006.

Toussaint, G., Burov, E., and Jolivet, L.: Continental plate collision: Unstable vs. stable slab dynamics, Geology, 32, 33–36, 2004.

Turcotte, D. L. and Schubert, G.: Geodynamics, Applications of Continuum Physics to Geological Problems, Second Edition, Cambridge University Press, 2002.

van den Beukel, J. and Wortel, R.: Temperatures and shear stresses in the upper part of subduction zone, Geophys. Res. Lett., 14, 1057–1060, 1987.

van Hinsbergen, D. J. J., Steinberger, B., Doubrovine, P. V., and Gassmoller, R.: Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision, J. Geophys. Res., 116, B06101, https://doi.org/10.1029/2010JB008051, 2011.

van Hunen, J. and Allen, M. B.: Continental collision and slab break-off: A comparison of 3-D numerical models with observations, Earth Planet. Sci. Lett., 302, 27–37, 2011.

Vos, I. M. A., Bierlein, F. P., and Phillips, D.: The Palaeozoic tectonometallogenic evolution of the northern Tasman Fold Belt System, Australia: interplay of subduction rollback and accretion, Ore Geol. Rev., 30, 277–296, 2007.

Willett, S., Beaumont, C., and Fullsack, P.: A mechanical model for the tectonics of doubly-vergent compressional orogens: Geology, 21, 371–374, 1993.

Wong-A-Ton, S. Y. M. and Wortel, M. J. R.: Slab detachment in continental collision zones: an analysis of controlling parameters, Geophys. Res. Lett., 24, 2095–2098, 1997.

Wortel, M. J. R. and Spakman, W.: Structure and dynamics of subducted lithosphere in the Mediterranean region, Proc. K. Ned. Akad. Wet., 95, 325–347, 1992.

Wortel, M. J. R. and Spakman, W.: Subduction and slab detachment in the Mediterranean-Carpathian region, Science, 290, 1910–1917, 2000.

Zhong, S., Zuber, M. T., Moresi, L. N., and Gurnis, M.: The role of temperature dependent viscosity and surface plates in spherical shell models of mantle convection, J. Geophys. Res., 105, 11063–11082, 2000.