Numerical methods for the computation of the confluent and Gauss hypergeometric functions

Numerical Algorithms - Tập 74 - Trang 821-866 - 2016
John W. Pearson1, Sheehan Olver2, Mason A. Porter3
1School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, UK
2School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
3Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Woodstock Road, UK

Tóm tắt

The two most commonly used hypergeometric functions are the confluent hypergeometric function and the Gauss hypergeometric function. We review the available techniques for accurate, fast, and reliable computation of these two hypergeometric functions in different parameter and variable regimes. The methods that we investigate include Taylor and asymptotic series computations, Gauss–Jacobi quadrature, numerical solution of differential equations, recurrence relations, and others. We discuss the results of numerical experiments used to determine the best methods, in practice, for each parameter and variable regime considered. We provide “roadmaps” with our recommendation for which methods should be used in each situation.

Tài liệu tham khảo

Abad, J., Sesma, J.: Computation of the regular confluent hypergeometric function. The Mathematica Journal 5, 74–76 (1995)

Abramowitz, M., Stegun, I. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards (1970)

Andrews, G.E., Askey, R., Roy, R.: Special Functions, vol. 71 of Mathematics and its Applications. Cambridge University Press (1999)

Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi , F.G.: Higher Transcendental Functions, vol. I. McGraw–Hill (1953)

Ferreira, C., López, J. L., Sinusía, E. P.: The Gauss hypergeometric function F(a,b;c;z) for large c. J. Comput. Appl. Math. 197, 568–577 (2006)

Gil, A., Segura, J.: Algorithm 819: AIZ, BIZ: Two Fortran 77 routines for the computation of complex Airy functions. Trans. Math. Softw. 28, 325–336 (2002)

Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Society for Industrial and Applied Mathematics (2007)

Gil, A., Segura, J., Temme, N.M.: Parabolic cylinder function W(a,x) and its derivative. ACM Trans. Math. Softw. 38 (2011). Article 6

Godfrey, P.: A note on the computation of the convergent Lanczos complex gamma approximation (2001), available at http://www.numericana.com/answer/info/godfrey.htm

Hochstadt, H.: The Functions of Mathematical Physics. Wiley (1971)

Hsu , Y. P.: Development of a Gaussian hypergeometric function code in complex domains. Int. J. Modern Phys. C 4, 805–840 (1993)

Ibrahim, A.K., Rakha, M.A.: Contiguous relations and their computations for 2 F 1 hypergeometric series. Comput. Math. Appl. 56, 1918–1926 (2008)

Kalla, S.L.: On the evaluation of the Gauss hypergeometric function. Compt. Rendus l’Acad. Bulgare Sci. 45, 35–36 (1992)

López, J. L., Pagola, P.J: The confluent hypergeometric functions M(a,b;z) and U(a,b;z) for large b and z. J. Comput. Appl. Math. 233, 1570–1576 (2010)

Luke, Y.L.: The Special Functions and their Approximations, vol. I. Academic Press (1969)

Luke , Y.L.: The Special Functions and their Approximations, vol. II. Academic Press (1969)

Pearson, J.: Computation of Hypergeometric Functions, Dissertation, MSc in Mathematical Modelling and Scientific Computing, University of Oxford (2009), available at https://sites.google.com/site/johnpearsonmaths/research

Potts, P.J.: Computable real arithmetic using linear fractional transformations. Report, Department of Computing, Imperial College of Science, Technology and Medicine, London (1996), available at http://citeseer.ist.psu.edu/potts96computable.html

Press, W.A., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. 3rd edn. Cambridge University Press (2007)

Seaborn, J.B.: Hypergeometric Functions and their Applications. Springer-Verlag (1991)

Slater, L.J.: Confluent Hypergeometric Functions. Cambridge University Press (1960)

Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press (1966)

Temme, N.M.: Special Functions: An Introduction to the Classical Functions of Mathematical Physics. Wiley (1996)

Digital Library of Mathematical Functions, National Institute of Standards and Technology, available at http://dlmf.nist.gov/

Matlab, The Mathworks Inc., Version R2015a (2015)

Mathematica, Wolfram Research, Inc., Mathematica, Version 8.0 (2010)

The NAG Toolbox for Matlab, The Numerical Algorithms Group (2013)

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/10/

http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/10/

http://datashare.is.ed.ac.uk/handle/10283/607