Numerical investigations on the thermal efficiency in laser-assisted plasma arc welding

Welding in the World - Tập 63 - Trang 23-31 - 2018
S. Jäckel1, M. Trautmann1, M. Hertel1, U. Füssel1, D. Hipp1, A. Mahrle2, E. Beyer1,2
1Technische Universität Dresden, Dresden, Germany
2Fraunhofer Institute of Material and Beam Technology, Dresden, Germany

Tóm tắt

Numerical investigations on the thermal efficiency in laser-assisted plasma arc welding (LAPAW) have been carried out by the combination of a magneto-hydrodynamic (MHD) arc model and a smoothed-particle-hydrodynamics (SPH) model of the weld pool. The comparison of the calculated weld seam cross-sections gained from numerical simulation as well as experimental examinations shows a good agreement. By the use of the weld pool model, the sensitivity of different influencing variables was investigated. The analysis clearly reveals the major influence of the central heat flux density on the penetration profile and on the thermal efficiency of the process. The higher the heat flux of the laser beam and the higher the constriction of the heat flux profile of the arc, the higher the thermal efficiency of the process.

Tài liệu tham khảo

Steen WM, Eboo M (1979) Arc-augmented laser welding. Met Constr 11(7):332–335 Steen WM (1980) Arc-augmented laser processing of materials. J Appl Phys 51(11):5636–5641 Hu B, den Ouden G (2005) Laser induced stabilisation of the welding arc. Sci Technol Weld Join 10(1):76–81 Stute U, Kling R, Hermsdorf J (2007) Interaction between electrical arc and Nd:YAG laser radiation. CIRP annals – manufacturing. Technology 56(1):197–200 Mahrle A, Rose S, Schnick M, Beyer E, Füssel U (2013) Stabilisation of plasma welding arcs by low power laser beams. Sci Technol Weld Join 18(4):323–328 Schnick M, Rose S, Füssel U, Mahrle A, Demuth C, Beyer E (2013) Experimental and numerical investigations of the interaction between a plasma arc and a laser. Welding in the World 56(3):93–100 Cui H, Decker I, Pursch H, Ruge J, Wendelstorf J, Wohlfahrt H (1992) Laserinduziertes Fokussieren des WIG-Lichtbogens, Laser induced focusing of a TIG arc, DVS Bericht, Bd. 146. DVS-Verlag GmbH, Düsseldorf (in German) Decker I, Wendelstorf J, Wohlfahrt H (1995) Laserstrahl-WIG-Schweißen von Aluminiumlegierungen, Laser-TIG-welding of aluminium alloys DVS-Bericht, Bd. 170. DVS-Verlag, Düsseldorf, pp 206–208 (in German) Mahrle A, Schnick M, Rose S, Demuth C, Beyer E, Füssel U (2011) Process characteristics of fibre-laser-assisted plasma arc welding. J Phys D Appl Phys 44(34):345502–345513 Hu B, den Ouden G (2005) Synergetic effects of hybrid laser/arc welding. Sci Technol Weld Join 10(4):427–431 Mahrle A, Rose S, Schnick M, Beyer E, Füssel U (2013) Laser-assisted plasma arc welding of stainless steel. J Laser Appl 25(32006–1):32006–32008 Mahrle A, Rose S, Beyer E, Füssel U (2014) Crucial role of beam spot position in laser assisted plasma arc welding. Sci Technol Weld Join 19(2):119–124 Rose S, Mahrle A, Schnick M, Pinder T, Beyer E, Füssel U (2013) Plasma welding with a superimposed coaxial fiber laser beam. Welding in the World 57(6):857–865 Lowke JJ, Kovitya P, Schmidt HP (1992) Theory of free-burning arc columns including the influence of the cathode. J Phys D Appl Phys 25:1600–1606 Tanaka M, Lowke JJ (2007) Predictions of weld pool profiles using plasma physics (Topical Review). J Phys D Appl Phys 40:R1–R23 Schnick M, Fuessel U, Spille-Kohoff A (2010) Numerical investigations of the influence of design parameters, gas composition and electric current in plasma arc welding (PAW), Doc. IIW-1997. Welding in the World 54(3):R87–R96 Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics - theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389 Ito M, Nishio Y, Izawa S, Fukunishi Y, Shigeta M (2015) Numerical simulation of joining process in a TIG welding system using incompressible SPH method. Quarterly Journal of the Japan Welding Society 33(2):34s–38s Trautmann M, Hertel M, Füssel U (2017) Numerical simulation of TIG weld pool dynamics using smoothed particle hydrodynamics. Int J Heat Mass Transf 115(Part B):842–853 Murphy AB (2001) Thermal plasmas in gas mixtures (topical review). J Phys D Appl Phys 34(20):R151–R173 Cho YT, Cho WI, Na SJ (2011) Numerical analysis of hybrid plasma generated by Nd:YAG laser and gas tungsten arc. Opt Laser Technol 49:711–720 Kozakov R, Gött G, Uhrlandt D, Emde B, Hermsdorf J, Wesling V (2015) Study of laser radiation absorption in a TIG welding arc. Welding in the World 59:475–481 Radaj D (1999) Schweißprozesssimulation: Grundlagen und Anwendung. Verlag für Schweißen und verwandte Verfahren DVS-Verlag, Düsseldorf (in German) Matsumoto T, Misono T, Fujii H, Nogi K (2005) Surface tension of molten stainless steels under plasma conditions. J Mater Sci 40:2197–2200. https://doi.org/10.1007/s10853-005-1932-9