Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion

Opto-Electronics Review - Tập 27 - Trang 1-9 - 2019
A. Medjouri1, D. Abed2, Z. Becer1
1LEVRES Laboratory, Faculty of Exact Sciences, University of Echahid Hamma Lakhdar EL Oued, BP 789, El Oued, 39000, Algeria
2Department of Electronics and Telecommunications, Faculty of Sciences and Technology, University of 8 mai 1945 Guelma, 24000, Guelma, Algeria

Tài liệu tham khảo

Alfano, 2016 Alfano, 1970, Observation of self-phase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett., 24, 592, 10.1103/PhysRevLett.24.592 Faccio, 2016, Frontiers in modern optics Dudley, 2010 Dudley, 2006, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78, 1135, 10.1103/RevModPhys.78.1135 Hartung, 2011, Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation, Opt. Express, 19, 7742, 10.1364/OE.19.007742 Heidt, 2011, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express, 19, 3775, 10.1364/OE.19.003775 Yasin, 2012, Recent progress in optical fiber research, InTech Thomson, 2013 Thévenaz, 2011 Russell, 2006, Photonic-crystal fibers, J. Lightwave Technol., 24, 4729, 10.1109/JLT.2006.885258 Zakery, 2007 Wabnitz, 2015 Granzow, 2013, Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide, Opt. Express, 21, 10969, 10.1364/OE.21.010969 Eggleton, 2011, Chalcogenide photonics, Nat. Photonics, 5, 141, 10.1038/nphoton.2011.309 Yan, 2013, Numerical simulation on the coherent time-critical 2–5 mm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile, Opt. Commun., 293, 133, 10.1016/j.optcom.2012.11.093 Saini, 2015, Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: a new design and analysis, Opt. Commun., 345, 13, 10.1016/j.optcom.2015.02.049 Diouf, 2017, Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, 56, 163 Ben Salem, 2016, Ultraflat-top mid-infrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber, Opt. Eng., 55, 10.1117/1.OE.55.6.066109 Diouf, 2017, Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre, J. Mod. Optic., 64, 1335, 10.1080/09500340.2017.1288830 Karim, 2017, All-normal dispersion chalcogenide PCF for ultraflat mid-infrared supercontinuum generation, IEEE Photonics Technol. Lett., 29, 1792, 10.1109/LPT.2017.2752214 Karim, 2018, Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid infrared-region supercontinuum generation, J. Opt. Soc. Am. B, 35, 266, 10.1364/JOSAB.35.000266 Yang, 2016, Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications, J. Am. Ceram. Soc., 99, 12, 10.1111/jace.14025 Saini, 2017, Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis, J. Appl. Phys., 122, 10.1063/1.4997541 Boruah, 2017, Low bend loss photonic crystal fiber in Ga–Sb–S-based chalcogenide glass for nonlinear applications: design and analysis, J. Nanophotonics, 11, 10.1117/1.JNP.11.036002 Guo, 2004, Loss and dispersion analysis of microstructured fibers by finite-difference method, Opt. Express, 12, 3341, 10.1364/OPEX.12.003341 Zhu, 2002, Full-vectorial finite-difference analysis of microstructured optical fibers, Opt. Express, 10, 853, 10.1364/OE.10.000853 Medjouri, 2015, Analysis of a new circular photonic crystal fiber with large mode area, Optik, 126, 5718, 10.1016/j.ijleo.2015.09.035 Agrawal, 2013 Rottwitt, 2005, Analyzing the fundamental properties of Raman amplification in optical fibers, J. Lightwave Technol., 23, 3597, 10.1109/JLT.2005.857776 Klimczak, 2016, Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser, Sci Rep-Uk, 6, 1 Genty, 2016, Chapter two-Coherence of supercontinuum light, Prog. Optics, 61, 10.1016/bs.po.2015.10.002 Frosz, 2010, Validation of input-noise model for simulations of supercontinuum generation and rogue waves, Opt. Express, 18, 14778, 10.1364/OE.18.014778 Ciret, 2017, Generation of ultra-broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides, J. Opt. Soc. Am. B, 34, 1156, 10.1364/JOSAB.34.001156 Klimczak, 2017, Coherent supercontinuum generation in soft glass photonic crystal fibers, Photonics Res, 5, 710, 10.1364/PRJ.5.000710 Boyd, 2008 Kaindl, 2000, Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm, J. Opt. Soc. Am. B, 17, 2086, 10.1364/JOSAB.17.002086 Tomlinson, 1985, Optical wave breaking of pulses in nonlinear optical fibers, Opt. Lett., 10, 457, 10.1364/OL.10.000457 Finot, 2008, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers, J. Opt. Soc. Am. B, 25, 1938, 10.1364/JOSAB.25.001938 Hooper, 2011, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express, 19, 4902, 10.1364/OE.19.004902 Maji, 2015, Design of all-normal dispersion based on multimaterial photonic crystal fiber in IR region for broadband supercontinuum generation, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, 54, 4042 Kalantari, 2018, Ultra-Wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique, Optik, 158, 142, 10.1016/j.ijleo.2017.12.014 Siwicki, 2017, Nanostructured graded-index core chalcogenide fiber with all-normal dispersion– design and nonlinear simulations, Opt. Express, 25, 12984, 10.1364/OE.25.012984 Froehly, 2012, Supercontinuum sources in optical coherence tomography: A state of the art and the application to scan-free time domain correlation techniques and depth dependant dispersion compensation, Opt. Fiber Technol., 18, 411, 10.1016/j.yofte.2012.08.001 Su, 2014, Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics, Opt. Express, 22, 15804, 10.1364/OE.22.015804 Paterova, 2018, Tunable optical coherence tomography in the infrared range using visible photons, Quantum Sci. Technol., 3, 10.1088/2058-9565/aab567 Colley, 2007, Mid-infrared optical coherence tomography, Rev. Sci. Instrum., 78, 10.1063/1.2821609 Drexler, 2015 Takebe, 1999, Thermal properties of Ga2S3-based glass and their consideration during fiber drawing, J. Non-Cryst. Solids, 258, 239, 10.1016/S0022-3093(99)00540-2 Rivera, 2017