Numerical investigation of a broadband coherent supercontinuum generation in Ga8Sb32S60 chalcogenide photonic crystal fiber with all-normal dispersion
Tài liệu tham khảo
Alfano, 2016
Alfano, 1970, Observation of self-phase modulation and small-scale filaments in crystals and glasses, Phys. Rev. Lett., 24, 592, 10.1103/PhysRevLett.24.592
Faccio, 2016, Frontiers in modern optics
Dudley, 2010
Dudley, 2006, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys., 78, 1135, 10.1103/RevModPhys.78.1135
Hartung, 2011, Design of all-normal dispersion microstructured optical fibers for pulse-preserving supercontinuum generation, Opt. Express, 19, 7742, 10.1364/OE.19.007742
Heidt, 2011, Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers, Opt. Express, 19, 3775, 10.1364/OE.19.003775
Yasin, 2012, Recent progress in optical fiber research, InTech
Thomson, 2013
Thévenaz, 2011
Russell, 2006, Photonic-crystal fibers, J. Lightwave Technol., 24, 4729, 10.1109/JLT.2006.885258
Zakery, 2007
Wabnitz, 2015
Granzow, 2013, Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide, Opt. Express, 21, 10969, 10.1364/OE.21.010969
Eggleton, 2011, Chalcogenide photonics, Nat. Photonics, 5, 141, 10.1038/nphoton.2011.309
Yan, 2013, Numerical simulation on the coherent time-critical 2–5 mm supercontinuum generation in an As2S3 microstructured optical fiber with all-normal flat-top dispersion profile, Opt. Commun., 293, 133, 10.1016/j.optcom.2012.11.093
Saini, 2015, Broadband mid-IR supercontinuum generation in As2Se3 based chalcogenide photonic crystal fiber: a new design and analysis, Opt. Commun., 345, 13, 10.1016/j.optcom.2015.02.049
Diouf, 2017, Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, 56, 163
Ben Salem, 2016, Ultraflat-top mid-infrared coherent broadband supercontinuum using all normal As2S5-borosilicate hybrid photonic crystal fiber, Opt. Eng., 55, 10.1117/1.OE.55.6.066109
Diouf, 2017, Ultra-broadband, coherent mid-IR supercontinuum expanding from 1.5 to 12.2 μm in new design of AsSe2 photonic crystal fibre, J. Mod. Optic., 64, 1335, 10.1080/09500340.2017.1288830
Karim, 2017, All-normal dispersion chalcogenide PCF for ultraflat mid-infrared supercontinuum generation, IEEE Photonics Technol. Lett., 29, 1792, 10.1109/LPT.2017.2752214
Karim, 2018, Design and modeling of dispersion-engineered all-chalcogenide triangular-core fiber for mid infrared-region supercontinuum generation, J. Opt. Soc. Am. B, 35, 266, 10.1364/JOSAB.35.000266
Yang, 2016, Ga–Sb–S Chalcogenide Glasses for Mid-Infrared Applications, J. Am. Ceram. Soc., 99, 12, 10.1111/jace.14025
Saini, 2017, Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis, J. Appl. Phys., 122, 10.1063/1.4997541
Boruah, 2017, Low bend loss photonic crystal fiber in Ga–Sb–S-based chalcogenide glass for nonlinear applications: design and analysis, J. Nanophotonics, 11, 10.1117/1.JNP.11.036002
Guo, 2004, Loss and dispersion analysis of microstructured fibers by finite-difference method, Opt. Express, 12, 3341, 10.1364/OPEX.12.003341
Zhu, 2002, Full-vectorial finite-difference analysis of microstructured optical fibers, Opt. Express, 10, 853, 10.1364/OE.10.000853
Medjouri, 2015, Analysis of a new circular photonic crystal fiber with large mode area, Optik, 126, 5718, 10.1016/j.ijleo.2015.09.035
Agrawal, 2013
Rottwitt, 2005, Analyzing the fundamental properties of Raman amplification in optical fibers, J. Lightwave Technol., 23, 3597, 10.1109/JLT.2005.857776
Klimczak, 2016, Direct comparison of shot-to-shot noise performance of all normal dispersion and anomalous dispersion supercontinuum pumped with sub-picosecond pulse fiber-based laser, Sci Rep-Uk, 6, 1
Genty, 2016, Chapter two-Coherence of supercontinuum light, Prog. Optics, 61, 10.1016/bs.po.2015.10.002
Frosz, 2010, Validation of input-noise model for simulations of supercontinuum generation and rogue waves, Opt. Express, 18, 14778, 10.1364/OE.18.014778
Ciret, 2017, Generation of ultra-broadband coherent supercontinuum in tapered and dispersion managed silicon nanophotonic waveguides, J. Opt. Soc. Am. B, 34, 1156, 10.1364/JOSAB.34.001156
Klimczak, 2017, Coherent supercontinuum generation in soft glass photonic crystal fibers, Photonics Res, 5, 710, 10.1364/PRJ.5.000710
Boyd, 2008
Kaindl, 2000, Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm, J. Opt. Soc. Am. B, 17, 2086, 10.1364/JOSAB.17.002086
Tomlinson, 1985, Optical wave breaking of pulses in nonlinear optical fibers, Opt. Lett., 10, 457, 10.1364/OL.10.000457
Finot, 2008, Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers, J. Opt. Soc. Am. B, 25, 1938, 10.1364/JOSAB.25.001938
Hooper, 2011, Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion, Opt. Express, 19, 4902, 10.1364/OE.19.004902
Maji, 2015, Design of all-normal dispersion based on multimaterial photonic crystal fiber in IR region for broadband supercontinuum generation, Pure Appl. Opt. J. Eur. Opt. Soc. Part A, 54, 4042
Kalantari, 2018, Ultra-Wide mid-IR supercontinuum generation in As2S3 photonic crystal fiber by rods filling technique, Optik, 158, 142, 10.1016/j.ijleo.2017.12.014
Siwicki, 2017, Nanostructured graded-index core chalcogenide fiber with all-normal dispersion– design and nonlinear simulations, Opt. Express, 25, 12984, 10.1364/OE.25.012984
Froehly, 2012, Supercontinuum sources in optical coherence tomography: A state of the art and the application to scan-free time domain correlation techniques and depth dependant dispersion compensation, Opt. Fiber Technol., 18, 411, 10.1016/j.yofte.2012.08.001
Su, 2014, Perspectives of mid-infrared optical coherence tomography for inspection and micrometrology of industrial ceramics, Opt. Express, 22, 15804, 10.1364/OE.22.015804
Paterova, 2018, Tunable optical coherence tomography in the infrared range using visible photons, Quantum Sci. Technol., 3, 10.1088/2058-9565/aab567
Colley, 2007, Mid-infrared optical coherence tomography, Rev. Sci. Instrum., 78, 10.1063/1.2821609
Drexler, 2015
Takebe, 1999, Thermal properties of Ga2S3-based glass and their consideration during fiber drawing, J. Non-Cryst. Solids, 258, 239, 10.1016/S0022-3093(99)00540-2
Rivera, 2017