Đặc Trưng Số và Thực Nghiệm của Bể Nóng trong Công Nghệ Nung Bột Laser SS316L

Integrating Materials and Manufacturing Innovation - Tập 12 - Trang 210-230 - 2023
Ahsan Khan1, Syed Hussain Imran Jaffery1, Syed Zahid Hussain2, Zahid Anwar3, Shakeel Dilawar1
1Department of Design and Manufacturing Engineering, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan
2Department of Mechatronics and Biomedical Engineering, Air University, Islamabad, Pakistan
3Department of Computer Sciences, North Dakota State University, Fargo, USA

Tóm tắt

Công nghệ nung bột laser (LPBF), còn được gọi là nóng chảy laser chọn lọc, là một công nghệ chế tạo thêm có tiềm năng lớn trong việc tạo ra các linh kiện kim loại ba chiều với thiết kế phức tạp. Việc áp dụng các chu trình nhiệt động lực trong quá trình nung chảy và làm mát khiến việc duy trì chất lượng bề mặt và hình dạng mong muốn trong quá trình LPBF trở nên khó khăn. Độ ổn định động của bể nóng chảy trong quá trình LPBF là điều cần thiết để xác định do ảnh hưởng của nó đến chất lượng sản phẩm được chế tạo. Cần thiết phải xem xét hành vi nhiệt và phân bố nhiệt độ bên trong bể nóng chảy. Sau khi xác thực thực nghiệm, việc sử dụng mô hình phần tử hữu hạn (FEM) có tiềm năng chính xác để xác định các phân bố nhiệt và kích thước của bể nóng chảy. Một mô hình tạm thời ba chiều dựa trên nguồn nhiệt Gaussian di động đã được sử dụng trong nghiên cứu này để xem xét ảnh hưởng của các biến quy trình (tức là, tốc độ quét, công suất laser, bán kính chùm tia laser, khoảng cách vài lớp, số lớp và góc quét cho mỗi lớp) đến hình dạng bể nóng chảy trong quá trình LPBF bột SS316L. Một mô hình phần tử hữu hạn dựa trên các tham số ba chiều đã được đề xuất để đánh giá độ dốc nhiệt độ và đặc điểm của bể nóng chảy của SS316L khi bị tác động bởi công nghệ nung bột laser. Phương pháp này xem xét ảnh hưởng của độ sâu thâm nhập laser đến đặc điểm của bể nóng chảy, được xác định bởi một mô hình phần tử hữu hạn nhiều lớp (15) và nhiều vết (6) với các tham số quy trình thay đổi, như công suất laser, tốc độ quét, bán kính chùm tia và khoảng cách loại bỏ. Dữ liệu thực nghiệm thu được từ tài liệu đã được sử dụng để hiệu chỉnh mô hình nguồn nhiệt được đề xuất, và mô hình phần tử hữu hạn đã được hiệu chỉnh sau đó đã được xác thực thông qua các thí nghiệm tiếp theo. Kết quả mô hình cho thấy sự phù hợp với dữ liệu thực nghiệm. Các ảnh hưởng của lớp giữa và vết giữa đã được xem xét. Các phân bố nhiệt độ cho mỗi vết và lớp, cũng như chiều sâu, chiều rộng và chiều dài của bể nóng chảy đã được đánh giá, và các giá trị quan sát cho mỗi biến đã được phân tích. Chiều dài, chiều rộng và chiều sâu trung bình của bể nóng chảy được xác định có sai số tương đối lần lượt là 1.88%, 1.49% và 2.12% giữa mô hình FEM và kích thước đo thực nghiệm trong một khoảng tối ưu của các tham số quy trình.

Từ khóa

#Công nghệ nung bột laser #bể nóng chảy #mô hình hóa phần tử hữu hạn #SS316L #nhiệt độ.

Tài liệu tham khảo

Huang Y, Yang L, Du X, Yang Y (2016) Finite element analysis of thermal behavior of metal powder during selective laser melting. Int J Therm Sci 104:146–157 Yadroitsev I, Yadroitsava I, Bertrand P, Smurov I (2012) Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp J 18:201–208 Gupta MK et al (2020) Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy. J Market Res 9(5):9506–9522 Ali H, Ghadbeigi H, Hosseinzadeh F, Oliveira J, Mumtaz K (2019) Effect of pre-emptive in situ parameter modification on residual stress distributions within selective laser-melted Ti6Al4V components. Int J Adv Manuf Technol 103(9):4467–4479 Yap CY et al (2015) Review of selective laser melting: Materials and applications. Appl Phys Rev 2(4):041101 Clare AT, Chalker PR, Davies S, Sutcliffe CJ, Tsopanos S (2008) Selective laser melting of high aspect ratio 3D nickel–titanium structures two way trained for MEMS applications. Int J Mech Mater Des 4(2):181–187 Wong M, Tsopanos S, Sutcliffe CJ, Owen I (2007) Selective laser melting of heat transfer devices. Rapid Prototyp J 13:291–297 Vandenbroucke B, Kruth JP (2007) Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyp J 13:196–203 Rochus P, Plesseria J-Y, Van Elsen M, Kruth J-P, Carrus R, Dormal T (2007) New applications of rapid prototyping and rapid manufacturing (RP/RM) technologies for space instrumentation. Acta Astronaut 61(1–6):352–359 Hollander DA et al (2006) Structural, mechanical and in vitro characterization of individually structured Ti–6Al–4V produced by direct laser forming. Biomaterials 27:955–963 Khanna N, Mistry S, Rashid RR, Gupta MK (2019) Investigations on density and surface roughness characteristics during selective laser sintering of Invar-36 alloy. Mater Res Express 6(8):086541 Xiong Z, Liu S, Li S, Shi Y, Yang Y, Misra R (2019) Role of melt pool boundary condition in determining the mechanical properties of selective laser melting AlSi10Mg alloy. Mater Sci Eng A 740:148–156 Hussein A, Hao L, Yan C, Everson R (2013) Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting. Mater Des 1980–2015(52):638–647 Denlinger ER, Gouge M, Irwin J, Michaleris P (2017) Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process. Addit Manuf 16:73–80 Zohdi TI (2017) Modeling and simulation of functionalized materials for additive manufacturing and 3d printing: continuous and discrete media: continuum and discrete element methods. Springer, Berlin Alghamdi A, Downing D, McMillan M, Brandt M, Qian M, Leary M (2019) Experimental and numerical assessment of surface roughness for Ti6Al4V lattice elements in selective laser melting. Int J Adv Manuf Technol 105(1):1275–1293 Jiang H-Z et al (2019) Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method. Opt Laser Technol 119:105592 Liu J et al (2020) Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting. Mater Des 186:108355 Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210(12):1624–1631 Kusuma C, Ahmed SH, Mian A, Srinivasan R (2017) Effect of laser power and scan speed on melt pool characteristics of commercially pure titanium (CP-Ti). J Mater Eng Perform 26(7):3560–3568 Craeghs T, Bechmann F, Berumen S, Kruth J-P (2010) Feedback control of Layerwise laser melting using optical sensors. Phys Procedia 5:505–514 Gusarov A, Yadroitsev I, Bertrand P, Smurov I (2007) Heat transfer modelling and stability analysis of selective laser melting. Appl Surf Sci 254(4):975–979 Childs T, Hauser C, Badrossamay M (2005) Selective laser sintering (melting) of stainless and tool steel powders: experiments and modelling. Proc Inst Mech Eng Part B J Eng Manuf 219(4):339–357 Grossmann A, Felger J, Froelich T, Gosmann J, Mittelstedt C (2019) Melt pool controlled laser powder bed fusion for customised low-density lattice structures. Mater Des 181:108054 Yasa E, Deckers J, Kruth JP (2011) The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp J 17:312–327 Shi X, Ma S, Liu C, Wu Q (2017) Parameter optimization for Ti–47Al–2Cr–2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol 90:71–79 Zaeh MF, Branner G (2010) Investigations on residual stresses and deformations in selective laser melting. Prod Eng Res Devel 4(1):35–45 Parry L, Ashcroft I, Wildman R (2019) Geometrical effects on residual stress in selective laser melting. Addit Manuf 25:166–175 Carraturo M, Lane B, Yeung H, Kollmannsberger S, Reali A, Auricchio F (2020) Numerical evaluation of advanced laser control strategies influence on residual stresses for laser powder bed fusion systems. Integrat Mater Manuf Innov 9:435–445 Leitz K-H, Singer P, Plankensteiner A, Tabernig B, Kestler H, Sigl L (2017) Multi-physical simulation of selective laser melting. Met Powder Rep 72(5):331–338 Song B, Dong S, Liao H, Coddet C (2012) Process parameter selection for selective laser melting of Ti6Al4V based on temperature distribution simulation and experimental sintering. Int J Adv Manuf Technol 61(9):967–974 Zhang D, Zhang P, Liu Z, Feng Z, Wang C, Guo Y (2018) Thermofluid field of molten pool and its effects during selective laser melting (SLM) of Inconel 718 alloy. Addit Manuf 21:567–578 Li Z, Xu R, Zhang Z, Kucukkoc I (2018) The influence of scan length on fabricating thin-walled components in selective laser melting. Int J Mach Tools Manuf 126:1–12 Manvatkar V, De A, DebRoy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys 116(12):124905 Carraturo M, Kollmannsberger S, Reali A, Auricchio F, Rank E (2021) An immersed boundary approach for residual stress evaluation in selective laser melting processes. Addit Manuf 46:102077 Matsumoto M, Shiomi M, Osakada K, Abe F (2002) Finite element analysis of single layer forming on metallic powder bed in rapid prototyping by selective laser processing. Int J Mach Tools Manuf 42(1):61–67 Luo Z, Zhao Y (2019) Numerical simulation of part-level temperature fields during selective laser melting of stainless steel 316L. Int J Adv Manuf Technol 104(5):1615–1635 Chen H, Wei Q, Wen S, Li Z, Shi Y (2017) Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method. Int J Mach Tools Manuf 123:146–159 Chen H, Wei Q, Zhang Y, Chen F, Shi Y, Yan W (2019) Powder-spreading mechanisms in powder-bed-based additive manufacturing: Experiments and computational modeling. Acta Mater 179:158–171 Ma L, Bin H (2007) Temperature and stress analysis and simulation in fractal scanning-based laser sintering. Int J Adv Manuf Technol 34(9):898–903 Chiumenti M et al (2017) Numerical modelling and experimental validation in selective laser melting. Addit Manuf 18:171–185 Nickel A, Barnett D, Prinz F (2001) Thermal stresses and deposition patterns in layered manufacturing. Mater Sci Eng, A 317(1–2):59–64 Artinov A, Bachmann M, Rethmeier M (2018) Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. Int J Heat Mass Transf 122:1003–1013 Khairallah SA, Anderson AT, Rubenchik A, King WE (2016) Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45 Yan W et al (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333 Foroozmehr A, Badrossamay M, Foroozmehr E, Golabi SI (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Design 89:255–263 Neiva E et al (2020) Numerical modelling of heat transfer and experimental validation in powder-bed fusion with the virtual domain approximation. Finite Elem Anal Des 168:103343 Dai K, Shaw L (2002) Distortion minimization of laser-processed components through control of laser scanning patterns. Rapid Prototyp J 8:270–276 Yang JHN, Brandt M, Sun SJ (2009) Numerical and experimental investigation of the heat-affected zone in a laser-assisted machining of Ti–6Al–4V alloy process. In: Materials science forum, 2009, 618: Trans Tech Publ, pp 143–146 Kollmannsberger S, Carraturo M, Reali A, Auricchio F (2019) Accurate prediction of melt pool shapes in laser powder bed fusion by the non-linear temperature equation including phase changes: model validity: isotropic versus anisotropic conductivity to capture AM Benchmark Test AMB2018-02. Integr Mater Manuf Innov 8:167–177 Yin J, Zhu H, Ke L, Lei W, Dai C, Zuo D (2012) Simulation of temperature distribution in single metallic powder layer for laser micro-sintering. Comput Mater Sci 53(1):333–339 Ibraheem AK, Derby B, Withers PJ (2002) Thermal and residual stress modelling of the selective laser sintering process. MRS Online Proceedings Library (OPL), 758 Shuai C, Feng P, Gao C, Zhou Y, Peng S (2013) Simulation of dynamic temperature field during selective laser sintering of ceramic powder. Math Comput Model Dyn Syst 19(1):1–11 Zhuang J-R, Lee Y-T, Hsieh W-H, Yang A-S (2018) Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol 103:59–76 Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57(20):6006–6012 Sowdari D, Majumdar P (2010) Finite element analysis of laser irradiated metal heating and melting processes. Opt Laser Technol 42(6):855–865 Gong H, Xing X, Gu H (2019) Rheological properties of two stainless steel 316L powders for additive manufacturing. IOP Conf Ser Mater Sci Eng 689(1):012003 Huang W, Zhang Y (2019) Finite element simulation of thermal behavior in single-track multiple-layers thin wall without-support during selective laser melting. J Manuf Process 42:139–148 Loh L-E et al (2015) Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300 Liu S, Zhu J, Zhu H, Yin J, Chen C, Zeng X (2020) Effect of the track length and track number on the evolution of the molten pool characteristics of SLMed Al alloy: numerical and experimental study. Opt Laser Technol 123:105924 Liu Y, Zhang J, Pang Z (2018) Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel. Opt Laser Technol 98:23–32 Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing, New York Wood W, Deem H, Lucks D (1964) Handbook of high temperature materials, 3rd edn. Springer, Berlin Brooks RF, Egry I, Seetharaman S, Grant D (2001) Reliable data for high-temperature viscosity and surface tension: results from a European project. High Temp High Pressur UK 33(6):631–637 Chen C et al (2019) The effect of process parameters on the residual stress of selective laser melted Inconel 718 thin-walled part. Rapid Prototyp J 25:1359–1369 Larimian T, Kannan M, Grzesiak D, AlMangour B, Borkar T (2020) Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting. Mater Sci Eng A 770:138455 Zhang X, Chen L, Zhou J, Ren N (2020) Simulation and experimental studies on process parameters, microstructure and mechanical properties of selective laser melting of stainless steel 316L. J Braz Soc Mech Sci Eng 42(8):1–14 Bertoli US, Wolfer AJ, Matthews MJ, Delplanque J-PR, Schoenung JM (2017) On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des 113:331–340 Huang Z, et al (2021) A new heat source model for selective laser melting simulations based on energy distribution on the powder layer and the surface of substrate. arXiv:2106.03482 Ahmed N, Barsoum I, Haidemenopoulos G, Al-Rub RA (2022) Process parameter selection and optimization of laser powder bed fusion for 316L stainless steel: a review. J Manuf Process 75:415–434 Khorasani M et al (2021) On the role of process parameters on meltpool temperature and tensile properties of stainless steel 316L produced by powder bed fusion. J Mater Res Technol 12:2438–2452 Heeling T, Cloots M, Wegener K (2017) Melt pool simulation for the evaluation of process parameters in selective laser melting. Addit Manuf 14:116–125 Tran H-C, Lo Y-L (2018) Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J Mater Process Technol 255:411–425 Gusarov A, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:7 Li Y, Zhou K, Tan P, Tor SB, Chua CK, Leong KF (2018) Modeling temperature and residual stress fields in selective laser melting. Int J Mech Sci 136:24–35 Fukuyama H, Higashi H, Yamano H (2019) Thermophysical properties of molten stainless steel containing 5 mass% B4C. Nucl Technol 205(9):1154–1163 Trejos-Taborda J, Reyes-Osorio L, Garza C, del Carmen Zambrano-Robledo P, Lopez-Botello O (2022) Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel. Int J Adv Manuf Technol 120(5–6):3947–3961 Lee K-H, Yun GJ (2020) A novel heat source model for analysis of melt Pool evolution in selective laser melting process. Addit Manuf 36:101497 Hodge N, Ferencz R, Solberg J (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54(1):33–51 Trejos-Taborda J, Reyes-Osorio L, Garza C, del Carmen Zambrano-Robledo P, Lopez-Botello O (2022) Finite element modeling of melt pool dynamics in laser powder bed fusion of 316L stainless steel. Int J Adv Manuf Technol 120(5):3947–3961