Numerical Simulation of Low Salinity Water Flooding on Core Samples for an Oil Reservoir in the Nam Con Son Basin, Vietnam
Tóm tắt
Low-salinity water flooding (LSWF) is environment-friendly and operates similarly to conventional waterflooding without the need for synthetic chemical materials. The application of LSWF makes sense in Vietnam as HC production has steadily declined since 2002, and the majority of main oil fields have become near mature and mature fields. In the next years, Enhanced Oil Recovery (EOR) should be a top priority for Petro Vietnam to boost its oil production, for which the key issue is how to select a suitable EOR technology. In this study, LSWF of the Lower Miocene sand using low salinity water from Lower Oligocene sand was investigated. Previously at the Ruby field in the Cuu Long Basin, an LSWF feasibility study was carried out based on a conventional core flooding experiment, which is time-consuming and costly. This study targets the Chim Sao field in the Nam Con Son Basin, for which a cheaper and faster assessing method is required. As a result, a numerical code written in Matlab was developed and successfully validated with the core flooding experiment results obtained at the Ruby field. The LSWF simulation was conducted using the multiple ion-exchange mechanisms (MIE), and the results obtained showed an increase in the oil recovery factor by 2.19% for the Lower Miocene Sand. Another important outcome of this study is the innovative proposal and successful simulation to use the abundant low salinity water from the underlying Lower Oligocene sand as a natural LSW source to inject into the Lower Miocene oil reservoir that can be a decisive factor to help apply LSWF in practice on a wide scale not only for Chim Sao but also other similar oil fields in southern offshore Vietnam.