Liên kết DNA nucleosome thúc đẩy sự nhận diện các nucleosome H3K36-methylated bởi miền PSIP1-PWWP
Tóm tắt
Sự nhận diện các biến đổi histone bởi các miền protein chuyên biệt là một bước quan trọng trong việc điều hòa các quá trình liên quan đến DNA như phiên mã gen. Cơ sở cấu trúc của các tương tác này thường được nghiên cứu thông qua các mô hình peptide histone, bỏ qua bối cảnh nucleosome. Ở đây, chúng tôi cung cấp cơ sở cấu trúc và nhiệt động học cho sự nhận diện các nucleosome H3K36-methylated (H3K36me) bởi miền PSIP1-PWWP, dựa trên phân tích đột biến sâu rộng, phương pháp cộng hưởng từ hạt nhân (NMR) tiên tiến và các cách tiếp cận tính toán.
Miền PSIP1-PWWP liên kết với peptide H3K36me3 và DNA với độ ái lực thấp, thông qua các bề mặt liên kết riêng biệt, bên cạnh nhau. Sự liên kết của PWWP với các nucleosome H3K36me được tăng cường khoảng 10,000 lần so với một peptide đã methyl hóa. Dựa trên phân tích đột biến và dữ liệu NMR, chúng tôi xây dựng một cấu trúc của phức hợp cho thấy miền PWWP được liên kết với các nucleosome H3K36me thông qua các tương tác đồng thời với cả đuôi histone đã methyl hóa và DNA nucleosome.
Từ khóa
#H3K36-methylated nucleosomes #PSIP1-PWWP domain #DNA-binding #histone modifications #structural biology.Tài liệu tham khảo
Fischle W, Wang Y, Allis CD: Histone and chromatin cross-talk. Curr Opin Cell Biol. 2003, 15: 172-183. 10.1016/S0955-0674(03)00013-9.
Kouzarides T: Chromatin modifications and their function. Cell. 2007, 128: 693-705. 10.1016/j.cell.2007.02.005.
Barski A, Cuddapah S, Cui K, Roh T-Y, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129: 823-837. 10.1016/j.cell.2007.05.009.
Wagner EJ, Carpenter PB: Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol. 2012, 13: 115-126. 10.1038/nrm3274.
Vermeulen M, Eberl HC, Matarese F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M: Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell. 2010, 142: 967-980. 10.1016/j.cell.2010.08.020.
Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP: The Tudor domain ‘Royal Family’: tudor, plant agenet, chromo, PWWP and MBT domains. Trends Biochem Sci. 2003, 28: 69-74. 10.1016/S0968-0004(03)00004-5.
Hughes RM, Wiggins KR, Khorasanizadeh S, Waters ML: Recognition of trimethyl-lysine by a chromodomain is not driven by the hydrophobic effect. Proc Natl Acad Sci USA. 2007, 104: 11184-11188. 10.1073/pnas.0610850104.
Vezzoli A, Bonadies N, Allen MD, Freund SMV, Santiveri CM, Kvinlaug BT, Huntly BJP, Göttgens B, Bycroft M: Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpf1. Nat Struct Mol Biol. 2010, 17: 617-619. 10.1038/nsmb.1797.
Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J: Structural and histone-binding ability characterizations of human PWWP domains. PLoS One. 2011, 6: e18919-10.1371/journal.pone.0018919.
Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, Patel DJ: Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature. 2006, 442: 91-95.
Peña PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani OP, Zhao R, Kutateladze TG: Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 2006, 442: 100-103.
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ: Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997, 389: 251-260. 10.1038/38444.
Lukasik SM, Cierpicki T, Borloz M, Grembecka J, Everett A, Bushweller JH: High resolution structure of the HDGF PWWP domain: a potential DNA-binding domain. Protein Sci. 2006, 15: 314-323. 10.1110/ps.051751706.
Laguri C, Duband-Goulet I, Friedrich N, Axt M, Belin P, Callebaut I, Gilquin B, Zinn-Justin S, Couprie J: Human mismatch repair protein MSH6 contains a PWWP domain that targets double-stranded DNA. Biochemistry. 2008, 47: 6199-6207. 10.1021/bi7024639.
Llano M, Vanegas M, Hutchins N, Thompson D, Delgado S, Poeschla EM: Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J Mol Biol. 2006, 360: 760-773. 10.1016/j.jmb.2006.04.073.
Turlure F, Maertens G, Rahman S, Cherepanov P, Engelman A: A tripartite DNA-binding element, comprised of the nuclear localization signal and two AT-hook motifs, mediates the association of LEDGF/p75 with chromatin in vivo. Nucleic Acids Res. 2006, 34: 1653-1665. 10.1093/nar/gkl052.
Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA: Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet. 2012, 8: e1002717-10.1371/journal.pgen.1002717.
Ge H, Si Y, Roeder RG: Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation. EMBO J. 1998, 17: 6723-6729. 10.1093/emboj/17.22.6723.
Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA, Wang GG, Shun M-C, Allis CD, Engelman A, Hughes SH: Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci USA. 2010, 107: 3135-3140. 10.1073/pnas.0914142107.
Gijsbers R, Vets S, De Rijck J, Ocwieja KE, Ronen K, Malani N, Bushman FD, Debyser Z: Role of the PWWP domain of lens epithelium-derived growth factor (LEDGF)/p75 cofactor in lentiviral integration targeting. J Biol Chem. 2011, 286: 41812-41825. 10.1074/jbc.M111.255711.
Yokoyama A, Cleary ML: Menin critically links MLL proteins with LEDGF on cancer-associated target genes. Cancer Cell. 2008, 14: 36-46. 10.1016/j.ccr.2008.05.003.
Daugaard M, Baude A, Fugger K, Povlsen LK, Beck H, Sørensen CS, Petersen NHT, Sorensen PHB, Lukas C, Bartek J, Lukas J, Rohde M, Jäättelä M: LEDGF (p75) promotes DNA-end resection and homologous recombination. Nat Struct Mol Biol. 2012, 19: 803-810. 10.1038/nsmb.2314.
Eidahl JO, Crowe BL, North JA, McKee CJ, Shkriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S, Poirier MG, Foster MP, Kvaratskhelia M: Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res. 2013, 41: 3924-3936. 10.1093/nar/gkt074.
Vermeulen M, Mulder KW, Denissov S, Pijnappel WWMP, van Schaik FMA, Varier RA, Baltissen MPA, Stunnenberg HG, Mann M, Timmers HTM: Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell. 2007, 131: 58-69. 10.1016/j.cell.2007.08.016.
Singh DP, Kubo E, Takamura Y, Shinohara T, Kumar A, Chylack LT, Fatma N: DNA-binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF. J Mol Biol. 2006, 355: 379-394. 10.1016/j.jmb.2005.10.054.
Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL, Panning B, Narlikar GJ, Shokat KM: The site-specific installation of methyl-lysine analogs into recombinant histones. Cell. 2007, 128: 1003-1012. 10.1016/j.cell.2006.12.041.
Hendrix J, Gijsbers R, De Rijck J, Voet A, Hotta J-I, McNeely M, Hofkens J, Debyser Z, Engelborghs Y: The transcriptional co-activator LEDGF/p75 displays a dynamic scan-and-lock mechanism for chromatin tethering. Nucleic Acids Res. 2011, 39: 1310-1325. 10.1093/nar/gkq933.
Kato H, van Ingen H, Zhou B-R, Feng H, Bustin M, Kay LE, Bai Y: Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc Natl Acad Sci USA. 2011, 108: 12283-12288. 10.1073/pnas.1105848108.
Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE: Cross-correlated relaxation enhanced 1H[bond]13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc. 2003, 125: 10420-10428. 10.1021/ja030153x.
Jencks WP: On the attribution and additivity of binding energies. Proc Natl Acad Sci USA. 1981, 78: 4046-4050. 10.1073/pnas.78.7.4046.
Zhou H-X: Polymer models of protein stability, folding, and interactions. Biochemistry. 2004, 43: 2141-2154. 10.1021/bi036269n.
Rees DC, Congreve M, Murray CW, Carr R: Fragment-based lead discovery. Nat Rev Mol Cell Biol. 2004, 3: 660-672.
Dominguez C, Boelens R, Bonvin AMJJ: HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc. 2003, 125: 1731-1737. 10.1021/ja026939x.
Karaca E, Bonvin AMJJ: A multidomain flexible docking approach to deal with large conformational changes in the modeling of biomolecular complexes. Structure. 2011, 19: 555-565. 10.1016/j.str.2011.01.014.
Tsutsui KM, Sano K, Hosoya O, Miyamoto T, Tsutsui K: Nuclear protein LEDGF/p75 recognizes supercoiled DNA by a novel DNA-binding domain. Nucleic Acids Res. 2011, 39: 5067-5081. 10.1093/nar/gkr088.
Shun M-C, Botbol Y, Li X, Di Nunzio F, Daigle JE, Yan N, Lieberman J, Lavigne M, Engelman A: Identification and characterization of PWWP domain residues critical for LEDGF/p75 chromatin binding and human immunodeficiency virus type 1 infectivity. J Virol. 2008, 82: 11555-11567. 10.1128/JVI.01561-08.
Kim D, Blus BJ, Chandra V, Huang P, Rastinejad F, Khorasanizadeh S: Corecognition of DNA and a methylated histone tail by the MSL3 chromodomain. Nat Struct Mol Biol. 2010, 17: 1027-1029. 10.1038/nsmb.1856.
Qiu Y, Zhang W, Zhao C, Wang Y, Wang W, Zhang J, Zhang Z, Li G, Shi Y, Tu X, Wu J: Solution structure of Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochem J. 2011, 442: 527-538.
van Ingen H, van Schaik FMA, Wienk H, Ballering J, Rehmann H, Dechesne AC, Kruijzer JAW, Liskamp RMJ, Timmers HTM, Boelens R: Structural insight into the recognition of the H3K4me3 mark by the TFIID subunit TAF3. Structure. 2008, 16: 1245-1256. 10.1016/j.str.2008.04.015.
Dyer PN, Edayathumangalam RS, White CL, Bao Y, Chakravarthy S, Muthurajan UM, Luger K: Reconstitution of nucleosome core particles from recombinant histones and DNA. Meth Enzymol. 2004, 375: 23-44.
Tighe A, Staples O, Taylor S: Mps1 kinase activity restrains anaphase during an unperturbed mitosis and targets Mad2 to kinetochores. J Cell Biol. 2008, 181: 893-901. 10.1083/jcb.200712028.
Dai J, Hyland EM, Yuan DS, Huang H, Bader JS, Boeke JD: Probing nucleosome function: a highly versatile library of synthetic histone H3 and H4 mutants. Cell. 2008, 134: 1066-1078. 10.1016/j.cell.2008.07.019.
de Graaf P, Mousson F, Geverts B, Scheer E, Tora L, Houtsmuller AB, Timmers HTM: Chromatin interaction of TATA-binding protein is dynamically regulated in human cells. J Cell Sci. 2010, 123: 2663-2671. 10.1242/jcs.064097.
Mokry M, Hatzis P, de Bruijn E, Koster J, Versteeg R, Schuijers J, van de Wetering M, Guryev V, Clevers H, Cuppen E: Efficient double fragmentation ChIP-seq provides nucleotide resolution protein-DNA binding profiles. PLoS One. 2010, 5: e15092-10.1371/journal.pone.0015092.
Li H, Durbin R: Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009, 25: 1754-1760. 10.1093/bioinformatics/btp324.
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A: NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR. 1995, 6: 277-293.
Jung YS, Zweckstetter M: Mars - robust automatic backbone assignment of proteins. J Biomol NMR. 2004, 30: 11-23.
Shen Y, Delaglio F, Cornilescu G, Bax A: TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR. 2009, 44: 213-223. 10.1007/s10858-009-9333-z.
López-Méndez B, Güntert P: Automated protein structure determination from NMR spectra. J Am Chem Soc. 2006, 128: 13112-13122. 10.1021/ja061136l.
Herrmann T, Güntert P, Wüthrich K: Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J Mol Biol. 2002, 319: 209-227. 10.1016/S0022-2836(02)00241-3.
Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read RJ, Rice LM, Simonson T, Warren GL: Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D: Biol Crystallogr. 1998, 54: 905-921.
Nederveen AJ, Doreleijers JF, Vranken W, Miller Z, Spronk CAEM, Nabuurs SB, Güntert P, Livny M, Markley JL, Nilges M, Ulrich EL, Kaptein R, Bonvin AMJJ: RECOORD: a recalculated coordinate database of 500+ proteins from the PDB using restraints from the BioMagResBank. Proteins. 2005, 59: 662-672. 10.1002/prot.20408.
Doreleijers JF, da Silva Sousa AW, Krieger E, Nabuurs SB, Spronk CAEM, Stevens TJ, Vranken WF, Vriend G, Vuister GW: CING: an integrated residue-based structure validation program suite. J Biomol NMR. 2012, 54: 267-283. 10.1007/s10858-012-9669-7.
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA: Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA. 2001, 98: 10037-10041. 10.1073/pnas.181342398.