Momen Điện Đôi Hạt Nhân Trong Các Mô Hình Siêu Bội Cao Mức

Journal of High Energy Physics - Tập 2015 - Trang 1-21 - 2015
Junji Hisano1,2,3, Daiki Kobayashi2, Wataru Kuramoto2, Takumi Kuwahara2
1Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya University, Nagoya, Japan
2Department of Physics, Nagoya University, Nagoya, Japan
3Kavli IPMU (WPI), UTIAS, University of Tokyo, Kashiwa, Japan

Tóm tắt

Các momen điện đôi (EDM) của electron và nucleon là những công cụ tiềm năng để khám phá vật lý mới. Trong các kịch bản siêu bội cao mức điển hình, chẳng hạn như các mô hình dựa trên sự kết hợp giữa ảnh hưởng bất thường và trung gian đo lường, gluino đóng góp thêm vào EDM của nucleon. Trong bài báo này, chúng tôi đã nghiên cứu tác động của toán tử Weinberg vi phạm CP do momen điện đôi cromoelectric của gluino gây ra trong các kịch bản siêu bội cao mức, và chúng tôi đã đánh giá EDM của nucleon và electron trong các kịch bản này. Chúng tôi phát hiện rằng trong các mô hình siêu bội cao mức điển hình, EDM của nucleon có thể nhận được đóng góp đáng kể từ toán tử Weinberg. Do đó, việc so sánh EDM của nucleon với EDM của electron là rất quan trọng để phân biệt giữa các mô hình siêu bội cao mức.

Từ khóa

#Momen Điện Đôi #Hạt Nhân #Siêu Bội #Weinberg #Vi Phạm CP

Tài liệu tham khảo

ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE]. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE]. ATLAS, CMS collaboration, Combined Measurement of the Higgs Boson Mass in pp Collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS Experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE]. S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE]. L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE]. G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE]. M. Ibe and T.T. Yanagida, The Lightest Higgs Boson Mass in Pure Gravity Mediation Model, Phys. Lett. B 709 (2012) 374 [arXiv:1112.2462] [INSPIRE]. M. Ibe, S. Matsumoto and T.T. Yanagida, Pure Gravity Mediation with m 3/2 = 10-100TeV, Phys. Rev. D 85 (2012) 095011 [arXiv:1202.2253] [INSPIRE]. F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, A Complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model, Nucl. Phys. B 477 (1996) 321 [hep-ph/9604387] [INSPIRE]. J. Hisano, S. Matsumoto, M. Nagai, O. Saito and M. Senami, Non-perturbative effect on thermal relic abundance of dark matter, Phys. Lett. B 646 (2007) 34 [hep-ph/0610249] [INSPIRE]. W. Altmannshofer, R. Harnik and J. Zupan, Low Energy Probes of PeV Scale Sfermions, JHEP 11 (2013) 202 [arXiv:1308.3653] [INSPIRE]. N. Nagata and S. Shirai, Sfermion Flavor and Proton Decay in High-Scale Supersymmetry, JHEP 03 (2014) 049 [arXiv:1312.7854] [INSPIRE]. M. Tanimoto and K. Yamamoto, \( {K}_L\to {\pi}^0\nu \overline{\nu} \) decay correlating with ǫ K in high-scale SUSY, PTEP 2015 (2015) 053B07 [arXiv:1503.06270] [INSPIRE]. J. Hisano, T. Kuwahara and N. Nagata, Grand Unification in High-scale Supersymmetry, Phys. Lett. B 723 (2013) 324 [arXiv:1304.0343] [INSPIRE]. J. Hisano, D. Kobayashi, T. Kuwahara and N. Nagata, Decoupling Can Revive Minimal Supersymmetric SU(5), JHEP 07 (2013) 038 [arXiv:1304.3651] [INSPIRE]. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE]. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE]. A.E. Nelson and N.J. Weiner, Extended anomaly mediation and new physics at 10 TeV, hep-ph/0210288 [INSPIRE]. K. Hsieh and M.A. Luty, Mixed gauge and anomaly mediation from new physics at 10 TeV, JHEP 06 (2007) 062 [hep-ph/0604256] [INSPIRE]. G.F. Giudice and A. Masiero, A Natural Solution to the mu Problem in Supergravity Theories, Phys. Lett. B 206 (1988) 480 [INSPIRE]. E.P. Shabalin, Electric Dipole Moment of Quark in a Gauge Theory with Left-Handed Currents, Sov. J. Nucl. Phys. 28 (1978) 75 [INSPIRE]. G.F. Giudice and A. Romanino, Electric dipole moments in split supersymmetry, Phys. Lett. B 634 (2006) 307 [hep-ph/0510197] [INSPIRE]. S. Weinberg, Larger Higgs Exchange Terms in the Neutron Electric Dipole Moment, Phys. Rev. Lett. 63 (1989) 2333 [INSPIRE]. J. Hisano and Y. Shimizu, Hadronic EDMs induced by the strangeness and constraints on supersymmetric CP phases, Phys. Rev. D 70 (2004) 093001 [hep-ph/0406091] [INSPIRE]. J. Hisano, M. Nagai and P. Paradisi, Flavor effects on the electric dipole moments in supersymmetric theories: A beyond leading order analysis, Phys. Rev. D 80 (2009) 095014 [arXiv:0812.4283] [INSPIRE]. K. Fuyuto, J. Hisano, N. Nagata and K. Tsumura, QCD Corrections to Quark (Chromo)Electric Dipole Moments in High-scale Supersymmetry, JHEP 12 (2013) 010 [arXiv:1308.6493] [INSPIRE]. ACME collaboration, J. Baron et al., Order of Magnitude Smaller Limit on the Electric Dipole Moment of the Electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE]. C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE]. W.C. Griffith, M.D. Swallows, T.H. Loftus, M.V. Romalis, B.R. Heckel and E.N. Fortson, Improved Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett. 102 (2009) 101601 [INSPIRE]. J. Hewett et al., Fundamental Physics at the Intensity Frontier, arXiv:1205.2671 [INSPIRE]. K. Kumar, Z.-T. Lu and M.J. Ramsey-Musolf, Working Group Report: Nucleons, Nuclei and Atoms, arXiv:1312.5416 [INSPIRE]. A. Lehrach, B. Lorentz, W. Morse, N. Nikolaev and F. Rathmann, Precursor Experiments to Search for Permanent Electric Dipole Moments (EDMs) of Protons and Deuterons at COSY, arXiv:1201.5773 [INSPIRE]. Storage Ring EDM collaboration, Y.K. Semertzidis, A Storage Ring proton Electric Dipole Moment experiment: most sensitive experiment to CP-violation beyond the Standard Model, arXiv:1110.3378 [INSPIRE]. W. Dekens et al., Unraveling models of CP-violation through electric dipole moments of light nuclei, JHEP 07 (2014) 069 [arXiv:1404.6082] [INSPIRE]. S.P. Martin, Generalized messengers of supersymmetry breaking and the sparticle mass spectrum, Phys. Rev. D 55 (1997) 3177 [hep-ph/9608224] [INSPIRE]. M. Ciuchini, E. Franco, L. Reina and L. Silvestrini, Leading order QCD corrections to b → sγ and b → sg decays in three regularization schemes, Nucl. Phys. B 421 (1994) 41 [hep-ph/9311357] [INSPIRE]. G. Degrassi, E. Franco, S. Marchetti and L. Silvestrini, QCD corrections to the electric dipole moment of the neutron in the MSSM, JHEP 11 (2005) 044 [hep-ph/0510137] [INSPIRE]. J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE]. J. Brod, U. Haisch and J. Zupan, Constraints on CP-violating Higgs couplings to the third generation, JHEP 11 (2013) 180 [arXiv:1310.1385] [INSPIRE]. F. Sala, A bound on the charm chromo-EDM and its implications, JHEP 03 (2014) 061 [arXiv:1312.2589] [INSPIRE]. M. Gorbahn and U. Haisch, Searching for t → c(u)h with dipole moments, JHEP 06 (2014) 033 [arXiv:1404.4873] [INSPIRE]. S.M. Barr and A. Zee, Electric Dipole Moment of the Electron and of the Neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE]. J. Hisano, J.Y. Lee, N. Nagata and Y. Shimizu, Reevaluation of Neutron Electric Dipole Moment with QCD Sum Rules, Phys. Rev. D 85 (2012) 114044 [arXiv:1204.2653] [INSPIRE]. T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin and B. Yoon, Neutron Electric Dipole Moment and Tensor Charges from Lattice QCD, arXiv:1506.04196 [INSPIRE]. D.A. Demir, M. Pospelov and A. Ritz, Hadronic EDMs, the Weinberg operator and light gluinos, Phys. Rev. D 67 (2003) 015007 [hep-ph/0208257] [INSPIRE]. J. Hisano, D. Kobayashi, N. Mori and E. Senaha, Effective Interaction of Electroweak-Interacting Dark Matter with Higgs Boson and Its Phenomenology, Phys. Lett. B 742 (2015) 80 [arXiv:1410.3569] [INSPIRE]. J.L. Evans and K.A. Olive, Universality in Pure Gravity Mediation with Vector Multiplets, Phys. Rev. D 90 (2014) 115020 [arXiv:1408.5102] [INSPIRE]. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, JHEP 09 (2014) 176 [arXiv:1405.7875] [INSPIRE]. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=8 \) TeV, JHEP 06 (2014) 055 [arXiv:1402.4770] [INSPIRE]. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE]. V.M. Belyaev and B.L. Ioffe, Determination of Baryon and Baryonic Resonance Masses from QCD Sum Rules. 1. Nonstrange Baryons, Sov. Phys. JETP 56 (1982) 493 [INSPIRE]. I.I. Kogan and D. Wyler, A Sum rule calculation of the neutron electric dipole moment from a quark chromoelectric dipole coupling, Phys. Lett. B 274 (1992) 100 [INSPIRE].