Nucleation and growth kinetics during metal-induced layer exchange crystallization of Ge thin films at low temperatures

Journal of Applied Physics - Tập 111 Số 4 - 2012
Shu Hu1, Paul C. McIntyre1,2
1Department of Materials Science and Engineering, Stanford University 1 , Stanford, California 94305, USA
2Geballe Laboratory for Advanced Materials, Stanford University, Stanford 2 , California 94305, USA

Tóm tắt

The kinetics of Al-catalyzed layer exchange crystallization of amorphous germanium (Ge) thin films at low temperatures is reported. Observation of Ge mass transport from an underlying amorphous Ge layer to the Al film surface through an interposed sub-nanometer GeOx interfacial layer allows independent measurement of the areal density and average area of crystalline Ge islands formed on the film surface. We show that bias-voltage stressing of the interfacial layer can be used to control the areal density of nucleated Ge islands. Based on experimental observations, the Johnson-Mehl-Avrami-Kolmogorov phase transformation theory is used to model nanoscale nucleation and growth of Ge islands in two dimensions. Ge island nucleation kinetics follows an exponentially decaying nucleation rate with time. Ge island growth kinetics switches from linear growth at a constant growth velocity to diffusion-limited growth as the growth front advances. The transition point between these two regimes depends on the Ge nucleation site density and the annealing temperature. Knowledge of the kinetics of low-temperature crystallization is important in achieving textured polycrystalline Ge thin films with large grains for applications in large-area electronics and solar energy conversion.

Từ khóa


Tài liệu tham khảo

2010, Appl. Phys. Lett., 97, 082104, 10.1063/1.3480600

2007, Appl. Phys. Lett., 91, 143107, 10.1063/1.2793183

2006, Scr. Mater., 55, 987, 10.1016/j.scriptamat.2006.08.029

1992, Phys. Rev. B, 46, 9505, 10.1103/PhysRevB.46.9505

1995, Philos. Mag. B, 71, 179, 10.1080/01418639508240305

2005, Mater. Res. Soc. Symp. Proc., A

1997, Thin Solid Films, 300, 138, 10.1016/S0040-6090(96)09447-3

1994, J. Electrochem. Soc., 141, 2235, 10.1149/1.2055095

2006, Thin Solid Films, 508, 315, 10.1016/j.tsf.2005.08.393

2009, Appl. Surf. Sci., 255, 7028, 10.1016/j.apsusc.2009.03.035

2006, Appl. Phys. Lett., 89, 192114, 10.1063/1.2387136

1994, Sol. Energy Mat. Sol. Cells, 35, 9, 10.1016/0927-0248(94)90117-1

2008, Appl. Phys. Lett., 93, 123505, 10.1063/1.2988497

2006, Nano Lett., 6, 318, 10.1021/nl052231f

2006, J. Appl. Phys., 100, 024318, 10.1063/1.2219007

2008, Nano Lett., 8, 3755, 10.1021/nl802062y

2010, Proc. 35th IEEE Photovoltaic Specialists Conference, 002034

2009, Nano Lett., 9, 148, 10.1021/nl802700u

2010, Nat. Mater., 9, 239, 10.1038/nmat2727

2009, Solid-State Electron., 53, 1159, 10.1016/j.sse.2009.08.002

1997, Proc. 26th IEEE Photovoltaic Specialists Conference, 511

2007, Int. Mater. Rev., 52, 193, 10.1179/174328007X160308

2000, J. Appl. Phys., 88, 124, 10.1063/1.373632

1975, The Theory of Transformations in Metals and Alloys

See supplementary material at http://dx.doi.org/10.1063/1.3682110 for correlation of the sizes of Ge islands and Ge crystal grains.

1978, J. Appl. Phys., 49, 2478, 10.1063/1.325096

1939, J. Chem. Phys., 7, 1103, 10.1063/1.1750380

2001, J. Appl. Phys., 89, 4643, 10.1063/1.1359149

1940, J. Chem. Phys., 8, 212, 10.1063/1.1750631

1998, Phys. Rev. Lett., 81, 1901, 10.1103/PhysRevLett.81.1901

1996, Phys. Rev. B, 54, 11741, 10.1103/PhysRevB.54.11741

2004, Acta Mater., 52, 3207, 10.1016/j.actamat.2004.03.020

2006, J. Phys. D: Appl. Phys., 39, 4544, 10.1088/0022-3727/39/21/005