Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis

I-Hsiung Brandon Chen1, M. Huber1, Tinglu Guan1, Anja Bubeck1, Larry Gerace1
1Department of Cell Biology, The Scripps Research Institute, 10555 N. Torrey Pines Rd, La Jolla, CA, 92037, USA

Tóm tắt

Abstract Background

The nuclear lamina is a protein meshwork lining the inner nuclear membrane, which contains a polymer of nuclear lamins associated with transmembrane proteins of the inner nuclear membrane. The lamina is involved in nuclear structure, gene expression, and association of the cytoplasmic cytoskeleton with the nucleus. We previously identified a group of 67 novel putative nuclear envelope transmembrane proteins (NETs) in a large-scale proteomics analysis. Because mutations in lamina proteins have been linked to several human diseases affecting skeletal muscle, we examined NET expression during differentiation of C2C12 myoblasts. Our goal was to identify new nuclear envelope and lamina components whose expression is coordinated with muscle differentiation.

Results

Using transcriptional microarray analysis, we found that expression of 6 of the NETs significantly increases during myoblast differentiation. We confirmed these results using quantitative RT-PCR, and furthermore, found that all 6 NETs are expressed at high levels in adult mouse skeletal muscle relative to 9 other tissues examined. Using epitope-tagged cDNAs, we determined that the 5 NETs we could analyze (NETs 9, 25, 32, 37 and 39) all target to the nuclear envelope in C2C12 cells. Furthermore, the 3 NETs that we could analyze by immunoblotting were highly enriched in nuclear envelopes relative to microsomal membranes purified from mouse liver. Database searches showed that 4 of the 6 up-regulated NETs contain regions of homology to proteins previously linked to signaling.

Conclusion

This work identified 6 NETs that are predicted to have important functions in muscle development and/or maintenance from their expression patterns during myoblast differentiation and in mouse tissues. We confirmed that 5 of these NETs are authentic nuclear envelope proteins. Four members of this group have potential signaling functions at the NE, based on their sequence homologies.

Từ khóa


Tài liệu tham khảo

Gerace L, Burke B: Functional organization of the nuclear envelope. Annu Rev Cell Biol. 1988, 4: 335-374. 10.1146/annurev.cb.04.110188.002003.

Holaska JM, Wilson KL, Mansharamani M: The nuclear envelope, lamins and nuclear assembly. Curr Opin Cell Biol. 2002, 14: 357-364. 10.1016/S0955-0674(02)00329-0.

Hetzer MW, Walther TC, Mattaj IW: Pushing the envelope: structure, function, and dynamics of the nuclear periphery. Annu Rev Cell Dev Biol. 2005, 21: 347-380. 10.1146/annurev.cellbio.21.090704.151152.

Tran EJ, Wente SR: Dynamic nuclear pore complexes: life on the edge. Cell. 2006, 125: 1041-1053. 10.1016/j.cell.2006.05.027.

Fahrenkrog B, Koser J, Aebi U: The nuclear pore complex: a jack of all trades?. Trends Biochem Sci. 2004, 29: 175-182. 10.1016/j.tibs.2004.02.006.

Stuurman N, Heins S, Aebi U: Nuclear lamins: their structure, assembly, and interactions. J Struct Biol. 1998, 122: 42-66. 10.1006/jsbi.1998.3987.

Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL: The nuclear lamina comes of age. Nat Rev Mol Cell Biol. 2005, 6: 21-31. 10.1038/nrm1550.

Hutchison CJ: Lamins: building blocks or regulators of gene expression?. Nat Rev Mol Cell Biol. 2002, 3: 848-858. 10.1038/nrm950.

Goldman RD, Gruenbaum Y, Moir RD, Shumaker DK, Spann TP: Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 2002, 16: 533-547. 10.1101/gad.960502.

Starr DA, Han M: ANChors away: an actin based mechanism of nuclear positioning. J Cell Sci. 2003, 116: 211-216. 10.1242/jcs.00248.

Worman HJ, Gundersen GG: Here come the SUNs: a nucleocytoskeletal missing link. Trends Cell Biol. 2006, 16: 67-69. 10.1016/j.tcb.2005.12.006.

Worman HJ, Courvalin JC: Nuclear envelope, nuclear lamina, and inherited disease. Int Rev Cytol. 2005, 246: 231-279.

Mounkes L, Stewart CL: Structural organization and functions of the nucleus in development, aging, and disease. Curr Top Dev Biol. 2004, 61: 191-228.

Hutchison CJ, Worman HJ: A-type lamins: guardians of the soma?. Nat Cell Biol. 2004, 6: 1062-1067. 10.1038/ncb1104-1062.

Ye Q, Worman HJ: Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J Biol Chem. 1996, 271: 14653-14656. 10.1074/jbc.271.25.14653.

Lin F, Blake DL, Callebaut I, Skerjanc IS, Holmer L, McBurney MW, Paulin-Levasseur M, Worman HJ: MAN1, an inner nuclear membrane protein that shares the LEM domain with lamina-associated polypeptide 2 and emerin. J Biol Chem. 2000, 275: 4840-4847. 10.1074/jbc.275.7.4840.

Worman HJ: Inner nuclear membrane and regulation of Smad-mediated signaling. Biochim Biophys Acta. 2006

Starr DA, Fischer JA: KASH 'n Karry: the KASH domain family of cargo-specific cytoskeletal adaptor proteins. Bioessays. 2005, 27: 1136-1146. 10.1002/bies.20312.

Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D: Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol. 2006, 172: 41-53. 10.1083/jcb.200509124.

Padmakumar VC, Libotte T, Lu W, Zaim H, Abraham S, Noegel AA, Gotzmann J, Foisner R, Karakesisoglou I: The inner nuclear membrane protein Sun1 mediates the anchorage of Nesprin-2 to the nuclear envelope. J Cell Sci. 2005, 118: 3419-3430. 10.1242/jcs.02471.

Haque F, Lloyd DJ, Smallwood DT, Dent CL, Shanahan CM, Fry AM, Trembath RC, Shackleton S: SUN1 interacts with nuclear lamin A and cytoplasmic nesprins to provide a physical connection between the nuclear lamina and the cytoskeleton. Mol Cell Biol. 2006, 26: 3738-3751. 10.1128/MCB.26.10.3738-3751.2006.

Schirmer EC, Florens L, Guan T, Yates JR, Gerace L: Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science. 2003, 301: 1380-1382. 10.1126/science.1088176.

Charge SB, Rudnicki MA: Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004, 84: 209-238. 10.1152/physrev.00019.2003.

Bains W, Ponte P, Blau H, Kedes L: Cardiac actin is the major actin gene product in skeletal muscle cell differentiation in vitro. Mol Cell Biol. 1984, 4: 1449-1453.

Yoshida N, Yoshida S, Koishi K, Masuda K, Nabeshima Y: Cell heterogeneity upon myogenic differentiation: down-regulation of MyoD and Myf-5 generates 'reserve cells'. J Cell Sci. 1998, 111 ( Pt 6): 769-779.

Kuo WP, Liu F, Trimarchi J, Punzo C, Lombardi M, Sarang J, Whipple ME, Maysuria M, Serikawa K, Lee SY, McCrann D, Kang J, Shearstone JR, Burke J, Park DJ, Wang X, Rector TL, Ricciardi-Castagnoli P, Perrin S, Choi S, Bumgarner R, Kim JH, Short GF, Freeman MW, Seed B, Jensen R, Church GM, Hovig E, Cepko CL, Park P, Ohno-Machado L, Jenssen TK: A sequence-oriented comparison of gene expression measurements across different hybridization-based technologies. Nat Biotechnol. 2006, 24: 832-840. 10.1038/nbt1217.

Qin LX, Beyer RP, Hudson FN, Linford NJ, Morris DE, Kerr KF: Evaluation of methods for oligonucleotide array data via quantitative real-time PCR. BMC Bioinformatics. 2006, 7: 23-10.1186/1471-2105-7-23.

Kleizen B, Braakman I: Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2004, 16: 343-349. 10.1016/j.ceb.2004.06.012.

Dallner G: Isolation of rough and smooth microsomes--general. Methods Enzymol. 1974, 31: 191-201.

Schirmer EC, Florens L, Guan T, Yates JR, Gerace L: Identification of novel integral membrane proteins of the nuclear envelope with potential disease links using subtractive proteomics. Novartis Found Symp. 2005, 264: 63-76; discussion 76-80, 227-30.

Holmer L, Worman HJ: Inner nuclear membrane proteins: functions and targeting. Cell Mol Life Sci. 2001, 58: 1741-1747. 10.1007/PL00000813.

Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P: Molecular Biology of the Cell. 2002, , Garland Science, 4

Neer EJ, Smith TF: A groovy new structure. Proc Natl Acad Sci U S A. 2000, 97: 960-962. 10.1073/pnas.97.3.960.

Goodchild RE, Dauer WT: The AAA+ protein torsinA interacts with a conserved domain present in LAP1 and a novel ER protein. J Cell Biol. 2005, 168: 855-862. 10.1083/jcb.200411026.

Brachner A, Reipert S, Foisner R, Gotzmann J: LEM2 is a novel MAN1-related inner nuclear membrane protein associated with A-type lamins. J Cell Sci. 2005, 118: 5797-5810. 10.1242/jcs.02701.

Caputo S, Couprie J, Duband-Goulet I, Konde E, Lin F, Braud S, Gondry M, Gilquin B, Worman HJ, Zinn-Justin S: The Carboxyl-terminal Nucleoplasmic Region of MAN1 Exhibits a DNA Binding Winged Helix Domain. J Biol Chem. 2006, 281: 18208-18215. 10.1074/jbc.M601980200.

Raju GP, Dimova N, Klein PS, Huang HC: SANE, a novel LEM domain protein, regulates bone morphogenetic protein signaling through interaction with Smad1. J Biol Chem. 2003, 278: 428-437. 10.1074/jbc.M210505200.

Osada S, Ohmori SY, Taira M: XMAN1, an inner nuclear membrane protein, antagonizes BMP signaling by interacting with Smad1 in Xenopus embryos. Development. 2003, 130: 1783-1794. 10.1242/dev.00401.

Lin F, Morrison JM, Wu W, Worman HJ: MAN1, an integral protein of the inner nuclear membrane, binds Smad2 and Smad3 and antagonizes transforming growth factor-beta signaling. Hum Mol Genet. 2005, 14: 437-445. 10.1093/hmg/ddi040.

Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K: The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem. 2005, 280: 15992-16001. 10.1074/jbc.M411234200.

Langhorst MF, Reuter A, Stuermer CA: Scaffolding microdomains and beyond: the function of reggie/flotillin proteins. Cell Mol Life Sci. 2005, 62: 2228-2240. 10.1007/s00018-005-5166-4.

Morrow IC, Parton RG: Flotillins and the PHB domain protein family: rafts, worms and anaesthetics. Traffic. 2005, 6: 725-740. 10.1111/j.1600-0854.2005.00318.x.

Schuck S, Simons K: Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J Cell Sci. 2004, 117: 5955-5964. 10.1242/jcs.01596.

Parton RG, Richards AA: Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic. 2003, 4: 724-738. 10.1034/j.1600-0854.2003.00128.x.

Kusumi A, Suzuki K: Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta. 2005, 1746: 234-251. 10.1016/j.bbamcr.2005.10.001.

Wu G, Lu ZH, Ledeen RW: Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. J Neurosci. 1995, 15: 3739-3746.

Vielhaber G, Pfeiffer S, Brade L, Lindner B, Goldmann T, Vollmer E, Hintze U, Wittern KP, Wepf R: Localization of ceramide and glucosylceramide in human epidermis by immunogold electron microscopy. J Invest Dermatol. 2001, 117: 1126-1136. 10.1046/j.0022-202x.2001.01527.x.

Alessenko A, Chatterjee S: Neutral sphingomyelinase: localization in rat liver nuclei and involvement in regeneration/proliferation. Mol Cell Biochem. 1995, 143: 169-174. 10.1007/BF01816950.

Love DC, Hanover JA: The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci STKE. 2005, 2005: re13-10.1126/stke.3122005re13.

Zachara NE, Hart GW: O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. Biochim Biophys Acta. 2004, 1673: 13-28.

Tettamanti G: Ganglioside/glycosphingolipid turnover: new concepts. Glycoconj J. 2004, 20: 301-317. 10.1023/B:GLYC.0000033627.02765.cc.

Hannun YA, Obeid LM: The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem. 2002, 277: 25847-25850. 10.1074/jbc.R200008200.

Ogretmen B, Hannun YA: Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer. 2004, 4: 604-616. 10.1038/nrc1411.

Sigal YJ, McDermott MI, Morris AJ: Integral membrane lipid phosphatases/phosphotransferases: common structure and diverse functions. Biochem J. 2005, 387: 281-293. 10.1042/BJ20041771.

Pyne S, Long JS, Ktistakis NT, Pyne NJ: Lipid phosphate phosphatases and lipid phosphate signalling. Biochem Soc Trans. 2005, 33: 1370-1374. 10.1042/BST20051370.

Mills GB, Moolenaar WH: The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer. 2003, 3: 582-591. 10.1038/nrc1143.

Silberstein L, Webster SG, Travis M, Blau HM: Developmental progression of myosin gene expression in cultured muscle cells. Cell. 1986, 46: 1075-1081. 10.1016/0092-8674(86)90707-5.

. [http://www.scripps.edu/researchservices/dna_array/]

Wu Z, Irizarry RA: Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J Comput Biol. 2005, 12: 882-893. 10.1089/cmb.2005.12.882.

Baldi P, Long AD: A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics. 2001, 17: 509-519. 10.1093/bioinformatics/17.6.509.

Snow CM, Senior A, Gerace L: Monoclonal antibodies identify a group of nuclear pore complex glycoproteins. J Cell Biol. 1987, 104: 1143-1156. 10.1083/jcb.104.5.1143.

Stewart JC: Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980, 104: 10-14. 10.1016/0003-2697(80)90269-9.

[http://ellerbruch.nmu.edu/cs255/jnord/boxplot]