Novel immobilization process of a thermophilic catalase: efficient purification by heat treatment and subsequent immobilization at high temperature

Juan Xu1, Hui Luo1, Claudia Pérez López2, Jing Xiao2, Yanhong Chang2
1School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
2School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

Hernandez K, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2012) Hydrogen peroxide in biocatalysis. A dangerous liaison. Curr Org Chem 16:2652–2672

Shamsipur M, Asgari M, Maragheh M, Moosavi-Movahedi A (2012) A novel impedimetric nanobiosensor for low level determination of hydrogen peroxide based on biocatalysis of catalase. Bioelectrochemistry 83:31–37

Plumeré N, Henig J, Campbell WH (2012) O2 removal system for electrochemical analysis under ambient air: application in an amperometric nitrate biosensor. Anal Chem 84:2141–2146

Soares JC, Moreira PR, Queiroga AC, Morgado J, Malcata FX, Pintado ME (2011) Application of immobilized enzyme technologies for the textile industry: a review. Biocatal Biotransfor 29:223–237

Gu JS, Wang YX (2009) PolySOD-catalase as a therapeutic agent with antioxidant properties. Pharm Biol 47:620–623

Wang L, Wang JX, Zhou FM (2004) Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanal 16:627–632

Luo H, Zhou Y, Chang YH, Xiong L, Liu LZ (2012) Rapid gene cloning, overexpression and characterization of a thermophilic catalase in E. coli. Adv Mater Res 365:367–374

Loprasert S, Negoro S, Okada H (1988) Thermostable peroxidase from Bacillus stearothermophilus. J Gen Microbiol 134:1971–1976

Patchett ML, Neal TL, Schofield LR, Strange RC, Daniel RM, Morgan HW (1989) Heat treatment purification of thermostable cellulase and hemicellulase enzymes expressed in E. coli. Enzyme Microb Tech 11:113–115

Pessela BCC, Torres R, Fuentes M, Mateo C, Filho M, Carrascosa AV, Vian A, Garcia JL, Guisan JM, Fernandez-Lafuente R (2004) A simple strategy for the purification of large thermophilic proteins overexpressed in mesophilic microorganisms: application to multimeric enzymes from Thermus sp. strain T2 expressed in Escherichia coli. Biotechnol Progr 20:1507–1511

Rocha-Martin J, Vega DE, Cabrera Z, Bolivar JM, Fernandez-Lafuente R, Berenguer J, Guisan JM (2009) Purification, immobilization and stabilization of a highly enantioselective alcohol dehydrogenase from Thermus thermophilus HB27 cloned in E. coli. Process Biochem 44:1004–1012

Fernandez-Lafuente R (2009) Stabilization of multimeric enzymes: strategies to prevent subunit dissociation. Enzyme Microb Tech 45:405–418

Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. In: Fessner WD, Demirjian DC (eds) Biocatalysis-from discovery to application. Springer-Publishing Inc, Berlin, pp 95–126

Alptekin O, Tukel SS, Yildirim D, Alagoz D (2010) Immobilization of catalase onto Eupergit C and its characterization. J Mol Catal B-Enzym 64:177–183

Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Tech 40:1451–1463

Mateo C, Grazú V, Pessela BCC, Montes T, Palomo JM, Torres R, López-Gallego F, Fernández-Lafuente R, Guisán JM (2007) Advances in the design of new epoxy supports for enzyme immobilization-stabilization. Biochem Soc T 35:1593–1601

Wheatley JB, Schmidt DE Jr (1999) Salt-induced immobilization of affinity ligands onto epoxide-activated supports. J Chromatogr A 849:1–12

Bauer-Arnaz K, Napolitano EW, Roberts DN, Montali JA, Hughes BR, Schmidt DE Jr (1998) Salt-induced immobilization of small affinity ligands on an epoxide-activated affinity support. J Chromatogr A 803:73–82

Wheatley JB, Schmidt DE Jr (1993) Salt-induced immobilization of proteins on a high-performance liquid chromatographic epoxide affinity support. J Chromatogr A 644:11–16

Melander WR, Corradini D, Cs Horváth (1984) Salt-mediated retention of proteins in hydrophobic-interaction chromatography: application of solvophobic theory. J Chromatogr A 317:67–85

Smalla K, Turkova J, Coupek J, Hermann P (1988) Influence of salts on the covalent immobilization of proteins to modified copolymers of 2-hydroxyethyl methacrylate with ethylene dimethacrylate. Biotechnol Appl Biochem 10:21–31

Moskovitz Y, Srebnik S (2005) Mean-field model of immobilized enzymes embedded in a grafted polymer layer. Biophys J 89:22–31

Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme Microb Tech 26:509–515

Brena B, González-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol 1051:15–31

Rodrigues RC, Ortiz C, Berenguer-Murcia Á, Torres R, Fernandez-Lafuente R (2013) Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev 42:6290–6307

Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

Van Den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218

Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzyme Microb Tech 49:326–346

Mateo C, Palomo JM, Fuentes M, Betancor L, Grazu V, López-Gallego F, Pessela BC, Hidalgo A, Fernández-Lorente G, Fernández-Lafuente R (2006) Glyoxyl agarose: a fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme Microb Tech 39:274–280

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680–685

Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

Kobayashi C, Suga Y, Yamamoto K, Yomo T, Ogasahara K, Yutani K, Urabe I (1997) Thermal conversion from low- to high-activity forms of catalase I from Bacillus stearothermophilus. J Biol Chem 272:23011–23016

Falcicchio P, Levisson M, Kengen SWM, Koutsopoulos S (2014) (Hyper)thermophilic enzymes: production and purification. Methods Mol Biol 1129:487–496

Mateo C, Abian O, Bernedo M, Cuenca E, Fuentes M, Fernandez-Lorente G et al (2005) Some special features of glyoxyl supports to immobilize proteins. Enzyme Microb Tech 37:456–462

Blanco RM, Calvete JJ, Guisán JM (1989) Immobilization-stabilization of enzymes; variables that control the intensity of the trypsin (amine)-agarose (aldehyde) multipoint attachment. Enzyme Microb Tech 11:353–359

Mateo C, Abian O, Fernández-Lorente G, Pedroche J, Fernández-Lafuente R, Guisan JM (2002) Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Progr 18:629–634

Barbosa O, Ortiz C, Berenguer-Murcia Á, Torres R, Rodrigues RC, Fernandez-Lafuente R (2014) Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Adv 4:1583–1600

Lopez CF, Darst RK, Rossky PJ (2008) Mechanistic elements of protein cold denaturation. J Phys Chem B 112:5961–5967

Dias CL, Ala-Nissila T, Karttunen M, Vattulainen I, Grant M (2008) Microscopic mechanism for cold denaturation. Phys Rev Lett 100:118101

Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M (2010) The hydrophobic effect and its role in cold denaturation. Cryobiology 60:91–99

Bommarius AS, Paye MF (2013) Stabilizing biocatalysts. Chem Soc Rev 42:6534–6565

Bolivar JM, Rocha-Martin J, Mateo C, Cava F, Berenguer J, Fernandez-Lafuente R, Guisan JM (2009) Coating of soluble and immobilized enzymes with ionic polymers: full stabilization of the quaternary structure of multimeric enzymes. Biomacromolecules 10:742–747

Bolivar JM, Hidalgo A, Sánchez-Ruiloba L, Berenguer J, Guisán JM, López-Gallego F (2011) Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. J Biotechnol 155:412–420

Torres R, Mateo C, Fuentes M, Palomo JM, Ortiz C, Fernández-Lafuente R, Guisan JM (2002) Reversible immobilization of invertase on Sepabeads coated with polyethyleneimine: optimization of the biocatalyst’s stability. Biotechnol Progr 18:1221–1226

Ellis RJ (2001) Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr Opin Struct Biol 11:114–119

Senthilkumar M, Gnanapragasam G, Arutchelvan V, Nagarajan S (2011) Treatment of textile dyeing wastewater using two-phase pilot plant UASB reactor with sago wastewater as co-substrate. Chem Eng J 166:10–14

Wilson L, Illanes A, Romero O (2013) Effect of inactivation and reactivation conditions on activity recovery of enzyme catalysts. Electron J Biotechn 16:15

Torres-Salas P, Del Monte-Martinez A, Cutiño-Avila B, Rodriguez-Colinas B, Alcalde M, Ballesteros AO, Plou FJ (2011) Immobilized Biocatalysts: novel Approaches and Tools for Binding Enzymes to Supports. Adv Mater 23:5275–5282

Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46

Daniel RM, Danson MJ (2013) Temperature and the catalytic activity of enzymes: a fresh understanding. FEBS Lett 587:2738–2743