Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry

Chemical Engineering and Technology - Tập 32 Số 11 - Trang 1655-1681 - 2009
Volker Hessel1,2,3
1Chemical Milli- and Micro-process Technologies, Institut für Mikrotechnik Mainz GmbH, Mainz, Germany
2Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
3Technical Chemistry, Department of Chemistry, Technische Universität Darmstadt, Darmstadt, Germany

Tóm tắt

AbstractDriven by the economics of scale, the size of reaction vessels as the major processing apparatus of the chemical industry has became bigger and bigger [1, 2]. Consequently, the efforts for ensuring mixing and heat transfer have also increased, as these are scale dependent. This has brought vessel operation to (partly severe) technical limits, especially when controlling harsh conditions, e.g., due to large heat releases. Accordingly, processing at a very large scale has resulted in taming of the chemistry involved in order to slow it down to a technically controllable level. Therefore, reaction paths that already turned out too aggressive at the laboratory scale are automatically excluded for later scale‐up, which constitutes a common everyday confinement in exploiting chemical transformations. Organic chemists are barely conscious that even the small‐scale laboratory protocols in their textbooks contain many slow, disciplined chemical reactions. Operations such as adding a reactant drop by drop in a large diluted solvent volume have become second nature, but are not intrinsic to the good engineering of chemical reactions. These are intrinsic to the chemical apparatus used in the past. In contrast, today's process intensification [3–12] and the new flow‐chemistry reactors on the micro‐ and milli‐scale [13–39] allow such limitations to be overcome, and thus, enable a complete, ab‐initio type rethinking of the processes themselves. In this way, space‐time yields and the productivity of the reactor can be increased by orders of magnitude and other dramatic performance step changes can be achieved. A hand‐in‐hand design of the reactors and process re‐thinking is required to enable chemistry rather than subduing chemistry around the reactor [40]. This often leads to making use of process conditions far from conventional practice, under harsh environments, a procedure named here as Novel Process Windows.

Từ khóa


Tài liệu tham khảo

N. Saha I. H. Rinard 4th Int. Conf. on Microreaction Technology IMRET 4 Atlanta GA March 2000.

I. H. Rinard inProc. of IMRET 2:2nd Int. Conf. on Microreaction Technology(Eds: W. Ehrfeld I. H. Rinard R. S. Wegeng) AIChE Atlanta GA1998 p. 299.

10.1016/S0255-2701(02)00084-3

Stankiewicz A. I., 2000, Chem. Eng. Prog., 1, 22

10.1016/S0009-2509(99)00520-5

10.1021/ie990869u

D. Reay C. Ramshaw A. Harvey Process Intensification – Engineering for Efficiency Sustainability and Flexibility Elsevier Amsterdam2008.

10.1016/j.cep.2008.04.012

10.1016/j.cep.2007.06.005

10.1016/S0255-2701(02)00084-3

10.1016/j.cep.2007.11.005

10.1016/j.cej.2007.03.084

10.1205/026387602753393196

10.1016/S0009-2509(00)00230-X

10.1002/aic.690451003

10.1038/31590

E. Klemm M. Rudek G. Markowz R. Schütte Neue Technologien Chemische Technik: Prozesse und Produkte Vol. 2 Wiley‐VCH Weinheim2004 p. 759.

N. Kockmann Micro‐process Engineering – Fundamentals Devices Fabrication and Applications Series on Advanced Micro and Nanosystems Wiley‐VCH Weinheim2006.

W. Ehrfeld V. Hessel H. Löwe inMicroreactors Wiley‐VCH Weinheim2000.

V. Hessel A. Renken J. C. Schouten J.‐i. Yoshida Handbook of Microreactor Engineering and Microreactor Chemistry 3rd ed. Wiley‐VCH Weinheim2009.

V. Hessel S. Hardt H. Löwe inChemical Micro‐process Engineering – Fundamentals Modeling and Reactions Wiley‐VCH Weinheim2004.

V. Hessel H. Löwe A. Müller G. Kolb inChemical Micro‐process Engineering – Processing and Plants Wiley‐VCH Weinheim2005.

10.1021/op0341770

10.1016/j.ces.2004.07.049

10.1016/j.cej.2003.10.005

10.1016/j.cattod.2005.09.011

10.1002/ceat.200390000

10.1002/ceat.200390060

10.1002/ceat.200390079

10.1016/S0040-4020(02)00432-5

10.1039/b313866f

10.1039/B609428G

10.1039/b617327f

10.1002/ejoc.200701041

10.1002/chem.200600596

Geyer K., 2007, Chim. oggi ‐ Chem. Today, 25, 38

10.1002/hlca.200490304

T. Wirth inMicroreactors in Organic Chemistry and Catalysis Wiley‐VCH Weinheim2008 p. 211.

10.1002/anie.200300577

10.2174/1385272053764953

10.1016/j.ces.2004.11.033

Nguyen N.‐T., 2005, J. Micromech. Microeng., 15

10.1002/ange.200701434

10.1039/B610888A

10.1088/0960-1317/16/11/027

10.1002/adma.200502025

10.1002/anie.200600122

10.1002/ceat.200800389

A. Mitsos P. I. Barton Microfabricated Power Generation Devices Wiley‐VCH Weinheim2009.

G. Kolb Fuel Processing Wiley‐VCH Weinheim2008.

Charpentier J.‐C., 2003, Int. J. Chem. Reactor Eng., 1, 1

Löb P., 2007, Chim. oggi ‐ Chem. Today, 25, 26

Charpentier J.‐C., 2003, Ing. Quim. Achema Special, 69

www.senternovem.nl/energytransition/downloads

10.1002/ceat.200407128

Roberge D. M., 2006, PharmaChem., 6, 14

10.1002/cite.200500033

10.2533/chimia.2006.611

U. Krtschil et al. 9th AIChE Annual Meeting San Francisco CA November2006.

10.1039/b810396h

10.1016/j.ces.2006.11.009

D. Kralisch inGreen Chemistry Metrics(Eds: A. Lapkin D. Constable) Blackwell Publishing Chichester UK2008.

G. H. Brundtland For World Commission on Environment and Development Our Common Future Oxford University Press Oxford1987.

United Nations Conf. on Environment and Development (UNCED) Rio de Janeiro June1992.

www.euractiv.com

P. T. Anastas J. Warner Green Chemistry: Theory and Practice Oxford University Press Oxford1998.

10.1039/gc990g15

10.1039/b210539j

10.1021/cr050944c

10.1002/ejoc.200900077

G. Veser Chem. Eng. Sci.2001 56 1265.

Löb P., 2006, Chim. oggi ‐ Chem. Today, 24, 46

Charpentier J.‐C., 2003, Kem. Ind., 52, 397

10.1016/j.tet.2005.08.054

10.1039/a808223e

J.‐I. Yoshida Flash Chemistry Wiley‐VCH Weinheim2008.

10.1016/S0022-1139(00)00300-6

10.1021/ie020717q

Chambers R. D., 2004, Chim. oggi ‐ Chem. Today, 6, 6

10.1039/a901473j

10.1039/b108841f

H. Hellmann G. Opitz α‐Aminoalkylierungen Verlag Chemie Weinheim1960.

I. Ugi S. Lohberger R. Karl in ComprehensiveOrganic Synthesis: Selectivity for Synthetic Efficiency(Eds: B. M. Trost C. H. Heathcock) Vol. 2 Pergamon Oxford1991 p. 1083.

E. J. Corey The Logic of Chemical Synthesis: Multistep Synthesis of Complex Carbogenic Molecules Nobel Lecture Stockholm December1990.

E.J. Corey X. M. Cheng The Logic of Chemical Synthesis John Wiley & Sons New York1989.

H. Ishikawa T. Suzuki Y. Hayashi Angew. Chem. Int. Ed.2009 48 (7) 1304.

10.1021/op0501545

10.1021/ja00800a088

C.C. Lee et al. Science2005 310 (12) 1793.

I. Ugi M. Almstetter B. Gruber M. Heilingbrunner MCR XII. Efficient Development of New Drugs by Online‐optimization of Molecular Libraries Springer‐Verlag Berlin1997 pp. 190–194.

I. Ugi M. Almstetter B. Gruber A. Dömling MCR X. Important Aspects for Automating Preparative Chemistry Springer‐Verlag Berlin1997 pp. 146–157.

V. Skelton et al. A Microreactor Device for the Ugi Four Component Condensation (4CC) Reaction Kluwer Academic Publishers Dordrecht The Netherlands2001 pp. 589–590.

M.C. Mitchell et al. Towards Organic Synthesis in Microfluidic Devices: Multicomponent Reactions for the Construction of Compound Libraries Kluwer Academic Publishers Dordrecht The Netherlands2000 pp. 463–465.

10.1039/b615186h

10.1021/op034193x

10.1021/op049970n

H. Krummradt U. Kopp J. Stoldt Proc. of IMRET 3: 3rd Int. Conf. on Microreaction Technology(Ed: W. Ehrfeld) Springer‐Verlag Berlin2000 p. 181.

10.1021/op0341768

10.1002/anie.200462466

10.1002/anie.200700611

10.1039/B414503H

10.1016/j.jfluchem.2004.09.006

10.1021/op050045q

V. Hessel et al. Chem. Eng. Technol. 2007 30 (3) 355.

10.1021/op9000803

10.1002/ceat.200900450

10.1002/ceat.200900331

10.1002/ange.200604175

10.1039/b803715a

10.1039/B512732G

10.1039/b703394j

10.1063/1.1831254

K. Pimparkar et al. AIChE Annual Meeting Philadelphia PA November2008.

10.1016/j.cej.2006.12.036

10.1016/j.cej.2007.07.049

10.2174/157017805774717517

10.1021/op010066u

10.1016/j.tet.2009.05.083

Vankayala B.K., 2007, Int. J. Chem. Reactor Eng., 5, 91, 10.2202/1542-6580.1463

10.1021/op0155155

10.1002/cite.200490233

10.1039/B710554A

10.1039/b719603b

10.1002/ange.200502387

S. Löbbecke et al. 12th Int. Symp. on Loss Prevention and Safety Promotion in the Process Industries Edinburgh Scotland May2007.

J J. Antes et al. Proc. of IMRET 5: 5th Int. Conf. on Microreaction Technology(Eds: M. Matlosz W. Ehrfeld J.P. Baselt) Springer‐Verlag Berlin2001 p. 446.

J. Antes et al. Proc. of IMRET 4: 4th Int. Conf. on Microreaction Technology AIChE Atlanta GA2000 p. 194.

O. Görke P. Pfeifer K. Schubert Proc. of IMRET 6:6thInt. Conf. on Microreaction Technology AIChE Atlanta GA2002 p. 262.

U. Hagendorf et al. Proc. of IMRET 2: 2nd Int. Conf. on Microreaction Technology(Eds: W. Ehrfeld I. H. Rinard R. S. Wegeng) AIChE Atlanta GA1998 p. 81.

Y. Voloshin A. Lawal Appl. Catal. A353 2009 1 (31) 9.

A. Lawal Y. Voloshin D. Dada AIChE Spring National Meeting Houston TX2007(published on CD).

10.1016/j.cherd.2008.01.002

10.1021/ie010306u

10.1016/S0167-2991(00)80885-X

A. Kursawe D. Hönicke Proc. of IMRET 5: 5th Int. Conf. on Microreaction Technology(Eds: M. Matlosz W. Ehrfeld J. P. Baselt) Springer‐Verlag Berlin2001 p. 240.

S. Kah D. Hönicke Proc. of IMRET 5: 5th Int. Conf. on Microreaction Technology(Eds: M. Matlosz W. Ehrfeld J. P. Baselt) Springer‐Verlag Berlin2001 p. 397.

T. Herweck et al. Proc. of IMRET 5: 5th Int. Conf. on Microreaction Technology(Eds: M. Matlosz W. Ehrfeld J.P. Baselt) Springer‐Verlag Berlin2001 p. 215.

10.1002/ceat.200407144

V. Skelton et al. inProc. of IMRET 3: 3rd Int. Conf. on Microreaction Technology(Ed: W. Ehrfeld) Springer‐Verlag Berlin2000 p. 235.

10.1039/b305226p

10.1002/anie.200604541

10.1002/ange.200500792

10.1002/ceat.200900337