Noradrenergic Pathway to the Cerebellum: the Study Must Go On

Springer Science and Business Media LLC - Tập 22 - Trang 1052-1054 - 2022
Shigeki Hirano1,2, Atsuhiko Sugiyama1, Kimihito Arai3
1Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
2Department of Functional Brain Imaging, Institute for Quantum Medical Science Directorate, National Institute for Quantum Science and Technology, Chiba, Japan
3Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan

Tóm tắt

In 1967, Andén, Fuxe, and Ungerstedt demonstrated the presence of monoamine-containing fibers in the rat cerebellum. Over the past 50 years, this finding has provided clinical relevance of the noradrenergic system to the cerebellum. Cerebellar dysfunction and noradrenergic system may relate to tremor in Parkinson disease and essential tremor, motor learning, and the vestibulo–ocular reflex in spinocerebellar ataxias. Cognition and emotion may also be linked to the cerebellar noradrenergic system, in relation to the symptoms of Alzheimer disease, dementia with Lewy bodies, and attention-deficit/hyperactivity disorder. Despite recent technological advances in neuroimaging for evaluating the noradrenergic system, we need more evidence to understand the precise pathophysiological relationship between the cerebellum and the noradrenergic system and its clinical implications.

Tài liệu tham khảo

Andén NE, Fuxe K, Ungerstedt U. Monoamine pathways to the cerebellum and cerebral cortex. Experientia. 1967;23:838–9. https://doi.org/10.1007/BF02146876. Moriguchi S, Kimura Y, Ichise M, Arakawa R, Takano H, Seki C, Ikoma Y, Takahata K, Nagashima T, Yamada M, Mimura M, Suhara T. PET quantification of the norepinephrine transporter in human brain with (S, S)-(18)F-FMeNER-D2. J Nucl Med. 2017;58:1140–5. https://doi.org/10.2967/jnumed.116.178913. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136:696–709. https://doi.org/10.1093/brain/aws360. Kish SJ, Shannak KS, Rajput AH, Gilbert JJ, Hornykiewicz O. Cerebellar norepinephrine in patients with Parkinson’s disease and control subjects. Arch Neurol. 1984;41:612–4. https://doi.org/10.1001/archneur.1984.04210080020007. Zhong Y, Liu H, Liu G, Zhao L, Dai C, Liang Y, Du J, Zhou X, Mo L, Tan C, Tan X, Deng F, Liu X, Chen L. A review on pathology, mechanism, and therapy for cerebellum and tremor in Parkinson’s disease. NPJ Parkinsons Dis. 2022;8:82. https://doi.org/10.1038/s41531-022-00347-2. Paulus W, Jellinger K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J Neuropathol Exp Neurol. 1991;50:743–55. https://doi.org/10.1097/00005072-199111000-00006. Louis ED, Faust PL. Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol. 2020;16:69–83. https://doi.org/10.1038/s41582-019-0302-1. Marin-Lahoz J, Gironell A. Linking essential tremor to the cerebellum: neurochemical evidence. Cerebellum. 2016;15:243–52. https://doi.org/10.1007/s12311-015-0735-z. Shill HA, Adler CH, Beach TG, Lue LF, Caviness JN, Sabbagh MN, Sue LI, Walker DG. Brain biochemistry in autopsied patients with essential tremor. Mov Disord. 2012;27:113–7. https://doi.org/10.1002/mds.24004. van Neerven J, Pompeiano O, Collewijn H, van der Steen J. Injections of beta-noradrenergic substances in the flocculus of rabbits affect adaptation of the VOR gain. Exp Brain Res. 1990;79:249–60. https://doi.org/10.1007/BF00608233. Watson M, McElligott JG. Cerebellar norepinephrine depletion and impaired acquisition of specific locomotor tasks in rats. Brain Res. 1984;296:129–38. https://doi.org/10.1016/0006-8993(84)90518-3. Gordon CR, Zivotofsky AZ, Caspi A. Impaired vestibulo-ocular reflex (VOR) in spinocerebellar ataxia type 3 (SCA3): bedside and search coil evaluation. J Vestib Res. 2014;24:351–5. https://doi.org/10.3233/VES-140527. Fukutani Y, Katsukawa K, Matsubara R, Kobayashi K, Nakamura I, Yamaguchi N. Delirium associated with Joseph disease. J Neurol Neurosurg Psychiatry. 1993;56:1207–12. https://doi.org/10.1136/jnnp.56.11.1207. Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M, Rovatirelin Study Group. Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry. 2020;91:254–62. https://doi.org/10.1136/jnnp-2019-322168 Simic G, Babic Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milosevic N, Bazadona D, Buee L, de Silva R, Di Giovanni G, Wischik CM, Hof PR. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38. https://doi.org/10.1016/j.pneurobio.2016.04.001. Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The locus coeruleus in aging and Alzheimer’s disease: a postmortem and brain imaging review. J Alzheimers Dis. 2021;83:5–22. https://doi.org/10.3233/JAD-210191. Hansen N. Locus coeruleus malfunction is linked to psychopathology in prodromal dementia with Lewy bodies. Front Aging Neurosci. 2021;13: 641101. https://doi.org/10.3389/fnagi.2021.641101. Schweitzer JB, Lee DO, Hanford RB, Tagamets MA, Hoffman JM, Grafton ST, Kilts CD. A positron emission tomography study of methylphenidate in adults with ADHD: alterations in resting blood flow and predicting treatment response. Neuropsychopharmacology. 2003;28:967–73. https://doi.org/10.1038/sj.npp.1300110. Ulke C, Rullmann M, Huang J, Luthardt J, Becker GA, Patt M, Meyer PM, Tiepolt S, Hesse S, Sabri O, Strauss M. Adult attention-deficit/hyperactivity disorder is associated with reduced norepinephrine transporter availability in right attention networks: a (S, S)-O-[(11)C]methylreboxetine positron emission tomography study. Transl Psychiatry. 2019;9:301. https://doi.org/10.1038/s41398-019-0619-y. Schmahmann JD, Weilburg JB, Sherman JC. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum. 2007;6:254–67. https://doi.org/10.1080/14734220701490995.