Nonlinear model order reduction for flexible multibody dynamics: a modal derivatives approach

Springer Science and Business Media LLC - Tập 36 Số 4 - Trang 405-425 - 2016
Long Wu1, Paolo Tiso2
1Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, The Netherlands
2Institute for Mechanical Systems, ETH Zürich, Zürich, Switzerland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

Bakr, E.M., Shabana, A.A.: Geometrically nonlinear analysis of multibody systems. Comput. Struct. 23(6), 739–751 (1986)

Nada, A., Hussein, B., Megahed, S., Shabana, A.: Use of the floating frame of reference formulation in large deformation analysis: experimental and numerical validation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(1), 45–58 (2010)

Mayo, J., Shabana, A.A., Dominguez, J.: Geometrically nonlinear formulations of beams in flexible multibody dynamics. J. Vib. Acoust. 117(4), 501–509 (1995)

Mayo, J., Domínguez, J.: Geometrically non-linear formulation of flexible multibody systems in terms of beam elements: Geometric stiffness. Comput. Struct. 59(6), 1039–1050 (1996)

Fehr, J., Eberhard, P.: Simulation process of flexible multibody systems with non-modal model order reduction techniques. Multibody Syst. Dyn. 25(3), 313–334 (2011)

Fischer, M., Eberhard, P.: Linear model reduction of large scale industrial models in elastic multibody dynamics. Multibody Syst. Dyn. 31(1), 27–46 (2014)

Holzwarth, P., Eberhard, P.: SVD-based improvements for component mode synthesis in elastic multibody systems. Eur. J. Mech. A, Solids 49, 408–418 (2015)

Rizzi, S.A., Przekop, A.: System identification-guided basis selection for reduced-order nonlinear response analysis. J. Sound Vib. 315(3), 467–485 (2008)

Li, Q., Wang, T., Ma, X.: Geometric nonlinear effects on the planar dynamics of a pivoted flexible beam encountering a point-surface impact. Multibody Syst. Dyn. 21(3), 249–260 (2009)

Holm-Jørgensen, K., Nielsen, S.R.K.: System reduction in multibody dynamics of wind turbines. Multibody Syst. Dyn. 21(2), 147–165 (2009)

Schwertassek, R., Wallrapp, O., Shabana, A.: Flexible multibody simulation and choice of shape functions. Nonlinear Dyn. 20(4), 361–380 (1999)

Schwertassek, R., Dombrowski, S., Wallrapp, O.: Modal representation of stress in flexible multibody simulation. Nonlinear Dyn. 20(4), 381–399 (1999)

Wallrapp, O., Wiedemann, S.: Simulation of deployment of a flexible solar array. Multibody Syst. Dyn. 7(1), 101–125 (2002)

Idelsohn, S.R., Cardona, A.: A reduction method for nonlinear structural dynamic analysis. Comput. Methods Appl. Mech. Eng. 49, 253–279 (1985)

Idelsohn, S.R., Cardona, A.: A load-dependent basis for reduced nonlinear structural dynamics. Comput. Struct. 20, 203–210 (1985)

Slaats, P.M.A., de Jongh, J., Sauren, A.A.H.J.: Model reduction tools for nonlinear structural dynamics. Comput. Struct. 54, 1155–1171 (1995)

Barbic, J., James, D.L.: Real-time subspace integration for St. Venant–Kirchhoff deformable models. ACM Trans. Graph. 24(3), 982–990 (2005)

Barbic, J., Zhao, Y.: Real-time large-deformation substructuring. ACM Trans. Graph. 30(4), 1–8 (2011)

Tiso, P., Jansen, E., Abdalla, M.: Reduction method for finite element nonlinear dynamic analysis of shells. AIAA J. 49(10), 2295–2304 (2011)

Liew, K.M., Leek, S.E., Liu, A.Q.: Mixed-interface substructures for dynamic analysis of flexible multibody systems. Eng. Struct. 18(7), 495–503 (1996)

Cardona, A.: Superelements modelling in flexible multibody dynamics. Multibody Syst. Dyn. 4(2–3), 245–266 (2000)

Nikravesh, P.: Understanding mean-axis conditions as floating reference frames. In: Ambrósio, J.C. (ed.) Advances in Computational Multibody Systems. Computational Methods in Applied Sciences, vol. 2, pp. 185–203. Springer, Berlin (2005)

Sharf, I.: Geometrically non-linear beam element for dynamics simulation of multibody systems. Int. J. Numer. Methods Eng. 39, 763–786 (1996)

Reddy, J.N.: Nonlinear Finite Element Analysis. Oxford University Press, New York (2004)

Sharf, I.: Nonlinear strain measures, shape functions and beam elements for dynamics of flexible beams. Multibody Syst. Dyn. 3, 189–205 (1999)

Bampton, M.C.C., Craig, J.R.R.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

Tiso, P.: Optimal second order reduction basis selection for nonlinear transient analysis. In: Proulx, T. (ed.) Modal Analysis Topics, vol. 3, pp. 27–39. Springer, New York (2011)

Meek, J.L., Liu, H.: Nonlinear dynamics analysis of flexible beams under large overall motions and the flexible manipulator simulation. Comput. Struct. 56(1), 1–14 (1995)

Le, T.-N., Battini, J.-M., Hjiaj, M.: Efficient formulation for dynamics of corotational 2D beams. Comput. Mech. 48(2), 153–161 (2011)

Le, T.-N., Battini, J.-M., Hjiaj, M.: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Math. 269, 538–565 (2014)

Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: part II. J. Appl. Mech. 53(4), 855–863 (1986)

Hsiao, K.M., Yang, R.T., Lee, A.C.: A consistent finite element formulation for non-linear dynamic analysis of planar beam. Int. J. Numer. Methods Eng. 37(1), 75–89 (1994)

Galvanetto, U., Crisfield, M.A.: An energy-conserving co-rotational procedure for the dynamics of planar beam structures. Int. J. Numer. Methods Eng. 39(13), 2265–2282 (1996)

Kim, T., Hansen, A.M., Branner, K.: Development of an anisotropic beam finite element for composite wind turbine blades in multibody system. Renew. Energy 59, 172–183 (2013)

Lang, H., Linn, J., Arnold, M.: Multi-body dynamics simulation of geometrically exact Cosserat rods. Multibody Syst. Dyn. 25(3), 285–312 (2011)

Schulze, M., Dietz, S., Burgermeister, B., Tuganov, A., Lang, H., Linn, J., Arnold, M.: Integration of nonlinear models of flexible body deformation in multibody system dynamics. J. Comput. Nonlinear Dyn. 9(1), 011012 (2013)

Weeger, O., Wever, U., Simeon, B.: Nonlinear frequency response analysis of structural vibrations. J. Comput. Mech. 54(6), 1477–1495 (2014)