Nonlinear effects of viscoelastic fluid flows and applications in microfluidics: A review

Chao Yuan1,2, Hong-Na Zhang2, Yuke Li3, Bin Li2, Jian Wu3, Feng‐Chen Li2
1School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou, China
2Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, China
3School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, China

Tóm tắt

Viscoelastic fluid naturally has both viscous and elastic properties. Therefore, there are two sources of nonlinear effects, namely inertial and elastic nonlinearities. The existence of elastic nonlinearity brings about various interesting flow phenomena in viscoelastic fluid flow, especially in microfluidics where the inertial nonlinearity can be negligible while the elastic nonlinearity can dominate the flow. Specifically, purely elasticity-induced instability and turbulence can occur in microchannels when the elastic nonlinearity is strong enough. Recently, those intriguing properties of viscoelastic fluid flow have motivated lots of researches on taking viscoelastic fluid as working fluid in different types of microfluidic devices, such as micro-mixers, micro heat exchangers, logic microfluidic circuits and particle manipulation. This paper aims to provide a state-of-the-art review of the nonlinear effect of viscoelastic fluids and its applications in the aforementioned microfluidic fields, which may provide a useful guidance for the researchers who are interested in this area.

Từ khóa


Tài liệu tham khảo

10.1038/nature05058

10.1103/RevModPhys.77.977

10.1007/s00397-013-0701-y

10.1063/1.4954814

10.1039/c4lc00128a

10.1021/acs.analchem.8b05042

10.1038/159310a0

10.1038/212754a0

10.1038/152663a0

10.1038/1971001a0

Toms BA. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In: The 1st international congress on rheology, Amsterdam, The Netherlands, September 1948, pp.135–141.

Bird RB, 1987, Dynamics of polymer liquids: vol. 2: Kinetic theory

10.1016/j.expthermflusci.2011.12.014

10.1007/978-3-642-55166-6

Arndt KF, Jipa S, Krahl F, et al. Polymer solids and polymer melts - definitions and physical properties I. In: Arndt KF and Lechner MD (eds) Numerical data and functional relationships in science and technology. Group VIII, Advanced materials and technologies. Volume 6, Polymers. Heidelberg: Springer, 2013.

Dealy JM and Larson RG. Structure and rheology of molten polymers—from structure to flow behavior and back again. 2nd ed. Munich: Hanser, 2018.

10.1126/science.1091215

Jönsson B, 2002, Surfactants and polymers in aqueous solution, 2

Li FC, 2012, Turbulent drag reduction by surfactant additives

10.1016/j.cis.2006.11.017

Oliveira MSN, 2010, Microfluidic flows of viscoelastic fluids. transport and mixing in laminar flows

10.1038/35011019

10.1016/j.ijheatfluidflow.2018.09.006

Li DY, 2017, Microfluid Nanofluid, 21, 13, 10.1007/s10404-017-1851-5

10.1126/science.1083694

10.1016/j.cep.2019.107771

10.1016/j.ijheatmasstransfer.2019.118476

10.3390/mi8090274

10.1016/j.jcis.2017.04.019

10.1016/S0021-9991(03)00028-7

10.1016/j.jnnfm.2006.03.018

10.1146/annurev.fl.27.010195.001125

Bird RB, Armstrong RC and Hassager O. Dynamics of polymeric liquids: vol. 1, Fluid mechanics. 2nd ed. New York: Wiley, 1987.

Larson RG, 1998, The structure and rheology of complex fluids

Oliveira MSN, Alves MA and Pinho FT. Microfluidic flows of viscoelastic fluids. In: Grigoriev R (ed) Transport and mixing in laminar flows: from microfluidics to oceanic currents. Weinheim: Wiley-VCH, 2012.

10.1115/1.4036592

Zhang HN, 2013, Chin Phys B, 22, 8

10.1063/1.4958719

10.1016/j.ces.2006.11.039

Dealy JM, 2010, Rheol Bull, 79, 14

Poole RJ, 2012, Br Soc Rheol Rheol Bull, 53, 32

Raiyleigh L. On the stability, or instability, of certain fluid motions. Proceedings London Mathematical Society 1880; 11: 57–70.

10.1017/S0022112090001124

10.1006/jcph.1998.5934

10.1017/S0022112095000486

10.1017/S0022112094001734

10.1007/BF00366504

Shaqfeh ESG, 1996, Ann Rev

10.1016/S0377-0257(96)01453-X

10.1103/PhysRevLett.77.2459

10.1103/PhysRevE.84.045301

10.1103/PhysRevLett.110.174502

10.1063/1.4945604

10.1103/PhysRevLett.96.144502

Poole RJ, Alves MM, Afonso AM, et al. Purely elastic instabilities in a microfluidic cross-slot geometry. In: The Society of Rheology 79th Annual Meeting, Salt Lake City, USA, 7-11 October 2007.

10.1103/PhysRevLett.99.164503

10.1039/C5SM01298H

10.1088/1367-2630/6/1/029

10.1103/PhysRevE.77.055306

10.1063/1.2732234

10.1103/PhysRevLett.96.214502

Cai WH, 2016, Viscoelastic fluid dynamics (in Chinese)

10.3390/ijms12053263

10.1088/0960-1317/15/2/R01

10.1016/j.sna.2017.01.005

10.1088/0960-1317/27/1/015008

10.1039/C6LC01346E

10.3390/mi1030082

10.1016/S1004-9541(08)60114-7

10.1016/j.cej.2015.10.122

10.1002/9781118749890

10.1038/35073524

Tatsumi K, Takeda Y, Suga K, et al. Turbulence characteristics and mixing performances of viscoelastic fluid flow in a serpentine microchannel. In: Journal of Physics: Conference Series 2011 (Vol. 318, No. 9, p. 092020). IOP Publishing Ltd.

10.1007/s10404-006-0109-4

10.1016/j.expthermflusci.2009.08.007

10.1016/j.expthermflusci.2016.02.005

10.1016/j.ijheatmasstransfer.2004.12.008

10.1016/j.ijheatmasstransfer.2018.06.037

Steinke ME and Kandlikar SG. Single-phase liquid heat transfer in plain and enhanced microchannels. New York, NY: American Society of Mechanical Engineers, 2006, pp.943–951.

Li DY. Study on elastic turbulence and heat transfer enhancement of viscoelastic fluid flow in curvy microchannel. PhD Thesis, Harbin Institute of Technology, China, 2017.

10.1039/C4LC00615A

10.1016/j.expthermflusci.2011.12.014

10.1016/j.jnnfm.2016.03.003

10.1016/j.expthermflusci.2016.05.001

10.1016/0377-0257(77)80014-1

10.1007/s10404-016-1838-7

10.1016/S0017-9310(02)00097-2

Nolan KP, Agarwal A, Lei SH, et al. Mixing enhancement due to viscoelastic instability in serpentine microchannels at very large weissenberg numbers. In: 2016 15th IEEE intersociety conference on thermal and thermomechanical phenomena in electronic systems. New York: IEEE, 2016, pp.301–306.

10.1103/PhysRevLett.86.4163

10.1038/35007047

10.1103/PhysRevLett.92.094501

10.1063/1.2959099

10.1016/j.jnnfm.2010.03.005

10.1103/PhysRevLett.92.094501

10.1039/C1RA00803J

Jensen KE, 2012, Biomicrofluidics, 6, 8

10.1098/rstb.2019.0040

10.1007/s10404-010-0602-7

10.1039/b712784g

10.1016/j.ces.2010.09.012

10.1016/j.aca.2009.07.017

10.1063/1.4799787

10.1021/acs.analchem.8b05749

10.1016/j.jnnfm.2019.104166

10.1007/s00397-016-0962-3

10.1016/j.chroma.2015.06.029

Li YK, 2018, Sci Rep, 8, 9, 10.1038/s41598-017-18427-2

10.1021/acs.analchem.5b00516

10.1088/0967-3334/26/3/R02

10.1002/jbio.200810018

10.1016/j.cis.2008.05.001

10.1038/ncomms3567

10.1039/C3RA43522A

10.1039/C5LC00525F

10.1039/c2lc21154h

10.1063/1.4963294

10.1021/acs.analchem.6b03501

10.1039/C0LC00102C

10.1039/c3lc50679g

10.1007/s10404-015-1552-x

10.1063/1.4944628

10.1038/srep03258

10.1039/C6LC00376A

10.1063/1.4927494

10.1039/C7LC01076A

10.1016/j.jnnfm.2012.12.006

10.1039/c2lc40147a

10.1007/s10404-013-1291-9

10.1039/C4LC01246A

10.1088/0960-1317/26/1/013003

10.1007/s10404-017-1933-4

10.1002/elps.201600386