Nonlinear boundary value problems of a class of elliptic equations involving critical variable exponents

Springer Science and Business Media LLC - Tập 2019 - Trang 1-21 - 2019
Yingying Shan1, Yongqiang Fu2
1School of Mathematical Sciences, Heilongjiang University, Harbin, China
2Department of Mathematics, Harbin Institute of Technology, Harbin, China

Tóm tắt

In this paper, we first obtain the existence of solutions for a class of elliptic equations involving critical variable exponents and nonlinear boundary values by the mountain pass theorem and concentration compactness principle. Then, under suitable assumptions, we obtain a sequence of solutions with positive energies going towards infinity by Fountain Theorem.

Tài liệu tham khảo

Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2000) Acerbi, E., Mingione, G.: Regularity results for stationary electrorheological fluids. Arch. Ration. Mech. Anal. 164, 213–259 (2002) Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66(4), 1383–1406 (2006) Kováčik, O., Rákosnik, J.: On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\). Czechoslov. Math. J. 41, 592–618 (1991) Chabrowski, J., Fu, Y.Q.: Existence of solutions for \(p(x)\)-Laplacian problems on a bounded domain. J. Math. Anal. Appl. 306, 604–618 (2005) Fan, X.L., Zhang, Q.H.: Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem. Nonlinear Anal., Theory Methods Appl. 52, 1843–1852 (2003) Bonder, J.F.: Multiple solutions for the p-Laplacian equation with nonlinear boundary conditions. Electron. J. Differ. Equ. 2006, 37 (2006) Pflüger, K.: Existence and multiplicity of solutions to a equation with nonlinear boundary condition. Electron. J. Differ. Equ. 1998, 10 (1998) Bonder, J.F., Rossi, J.D.: Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl. 263(1), 195–223 (2001) Xiang, M.Q., Rǎdulescu, V.D., Zhang, B.L.: Fractional Kirchhoff problems with critical Trudinger–Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58, 57 (2019). https://doi.org/10.1007/s00526-019-1499-y Xiang, M.Q., Rǎdulescu, V.D., Zhang, B.L.: Combined effects for fractional Schrödinger–Kirchhoff systems with critical nonlinearities. ESAIM Control Optim. Calc. Var. 24, 1249–1273 (2018) Xiang, M.Q., Rǎdulescu, V.D., Zhang, B.L.: A critical fractional Choquard–Kirchhoff problem with magnetic field. Commun. Contemp. Math. (2019). https://doi.org/10.1142/S0219199718500049 Xiang, M.Q., Rǎdulescu, V.D., Zhang, B.L.: Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity 31, 3228–3250 (2018) Xiang, M.Q., Zhang, B.L., Qiu, H.: Existence of solutions for a critical fractional Kirchhoff type problem in \(R^{N}\). Sci. China Math. 60, 1647–1660 (2017) Boureanu, M.M., Preda, F.: Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions. Nonlinear Differ. Equ. Appl. 7, 1–17 (2011) Mihǎilescu, M., Rǎdulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. R. Soc. Lond. Ser. A 462, 2625–2641 (2006) Fu, Y.Q.: The principle of concentration compactness in \(L^{p(x)}\) spaces and its application. Nonlinear Anal., Theory Methods Appl. 71, 1876–1892 (2009) Fan, X.L., Zhao, D.: On the spaces \(L^{p(x)}\) and \(W^{m,p(x)}\). J. Math. Anal. Appl. 263, 424–446 (2001) Fan, X.L.: Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl. 339, 1395–1412 (2008) Le, V.K.: On a sub-supersolution method for variational inequalities with Leray–Lions operators in variable exponent spaces. Nonlinear Anal., Theory Methods Appl. 71, 3305–3321 (2009) Fan, X.L., Han, X.Y.: Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R}^{N}\). Nonlinear Anal., Theory Methods Appl. 59, 173–188 (2004)