Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các toán tử Schrödinger phi tuyến với số không trong phổ
Tóm tắt
Chúng tôi tìm ra các nghiệm trạng thái nền cho phương trình Schrödinger phi tuyến dưới các điều kiện yếu hơn so với những gì đã được giả định trước đây. Chúng tôi cho phép số không nằm trong phổ.
Từ khóa
#phương trình Schrödinger phi tuyến #nghiệm trạng thái nền #phổTài liệu tham khảo
Alama S., Li Y.Y.: On “multibump” bound states for certain semilinear elliptic equations. Indiana Univ. Math. J. 41(4), 983–1026 (1992)
Angenent, S.: The Shadowing Lemma for Elliptic PDE. Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), NATO Advanced Science Institutes Series F: Computer and Systems Sciences, vol. 37, pp. 7–22. Springer, Berlin (1987)
Bartsch T., Ding Y.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15–37 (1999)
Bartsch T., Pankov A., Wang Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3(4), 549–569 (2001)
Berestycki H., Lions P.-L.: Existence d’etats multiples dans des equations de champs scalaires non lineaires dans le cas de masse nulle. (French. English summary) [Existence of multiple states in nonlinear field equations in the zero mass case]. C. R. Acad. Sci. Paris Ser. I Math. 297(4), 267–270 (1983)
Chabrowski J., Szulkin A.: On a semilinear Schrödinger equation with critical Sobolev exponent. Proc. Am. Math. Soc. 130(1), 85–93 (2002)
Ding Y., Szulkin A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. Partial Differ. Equ. 29(3), 397–419 (2007)
Dolbeault J., Esteban M.J., Séré E.: On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal. 174(1), 208–226 (2000)
Griesemer M., Siedentop H.: A minimax principle for the eigenvalues in spectral gaps. J. Lond. Math. Soc. (2) 60, 490–500 (1999)
Jeanjean L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-lazer type problem set on R N. Proc. R. Soc. Edinb. A 129, 787–809 (1999)
Jeanjean L.: Local conditions insuring bifurcation from the continuous spectrum. Math. Z. 232, 651–664 (1999)
Kryszewski W., Szulkin A.: Generalized linking theorems with an application to semilinear Schrödinger equation. Adv. Diff. Equ. 3, 441–472 (1998)
Kryszewski W., Szulkin A.: Infinite-dimensional homology and multibump solutions. J. Fixed Point Theory Appl. 5(1), 1–35 (2009)
Li Y.Q., Wang Z.Q., Zeng J.: Ground states of nonlinear Schrödinger equations with potentials. (English, French summary). Ann. Inst. H. Poincaré Anal. Non Linéaire 23(6), 829–837 (2006)
Mawhin, J.: Nonlinear functional analysis and periodic solution of semilinear wave equation. In: Lakshmikantham (ed.) Nonlinear Phenomena in Mathematical Sciences, pp. 671–681. Academic Press, London (1982)
Pankov A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005)
Reed M., Simon B.: Methods of Modern Mathematical Physics. Academic Press, London (1978)
Schechter, M.: Linking Methods in Critical Point Theory. Birkhauser, Boston (1999)
Schechter M.: Superlinear Schrödinger Operators. J. Funct. Anal. 262, 2677–2694 (2012)
Schechter, M., Zou, W.: Weak linking theorems and Schrödinger equations with critical Sobolev exponent. ESAIM Control Optim. Calc. Var. 9, 601–619 (2003)
Schechter M., Zou W.: Double linking theorem and multiple solutions. J. Funct. Anal. 205(1), 37–61 (2003)
Schechter M., Zou W.: Superlinear problems. Pac. J. Math. 214(1), 145–160 (2004)
Struwe M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160, 19–64 (1988)
Struwe M.: Variational Methods, 2nd edn. Springer, Berlin (1996)
Szulkin A., Weth T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257(12), 3802–3822 (2009)
Troestler C., Willem M.: Nontrivial solution of a semilinear Schrödinger equation. Commun. Partial Differ. Equ. 21(9–10), 1431–1449 (1996)
Willem, M.: Minimax Theorems. Birkhauser, Boston (1996)
Willem M., Zou W.: On a Schrödinger equation with periodic potential and spectrum point zero. Indiana Univ. Math. J. 52(1), 109–132 (2003)
Yang M.: Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities. Nonlinear Anal. 72(5), 2620–2627 (2010)
Yang M., Chen W., Ding Y.: Solutions for periodic Schrödinger equation with spectrum zero and general superlinear nonlinearities. J. Math. Anal. Appl. 364(2), 404–413 (2010)