Noninvasive prenatal testing for assessing foetal sex chromosome aneuploidy: a retrospective study of 45,773 cases

Molecular Cytogenetics - Tập 14 - Trang 1-8 - 2021
Xinran Lu1,2, Chaohong Wang2, Yuxiu Sun2, Junxiang Tang2, Keting Tong2, Jiansheng Zhu1,2
1Affiliated Maternity and Child Health Hospital of Anhui Medical University, Hefei, China
2Maternity and Child Health Hospital of Anhui Province, Hefei, China

Tóm tắt

To assess the positive predictive value (PPV) of noninvasive prenatal testing (NIPT) as a screening test for sex chromosome aneuploidy (SCA) with different maternal characteristics and prenatal decisions in positive cases. We retrospectively analysed 45,773 singleton pregnancies with different characteristics that were subjected to NIPT in the Maternity and Child Health Hospital of Anhui Province. The results were validated by karyotyping. Clinical data, diagnostic results, and data on pregnancy outcomes were collected. In total, 314 cases were SCA positive by NIPT; among those, 143 underwent invasive prenatal diagnostic testing, and 58 were true-positive. Overall, the PPVs for 45,X, 47,XXX, 47,XXY and 47,XYY were 12.5%, 51.72%, 66.67% and 83.33%, respectively. Interestingly, when only pregnant women of advanced maternal age (AMA) were screened, the PPVs for 45,X, 47,XXX, 47,XXY and 47,XYY were 23.81%, 53.33%, 78.95%, and 66.67%, respectively. The frequency of SCA was significantly higher in the AMA group than in the non-AMA group. The frequencies of 47,XXX and 47,XXY were significantly correlated with maternal age. NIPT performed better in predicting sex chromosome trisomies than monosomy X, and patients with 45,X positive foetuses were more eager to terminate pregnancy than those with 47,XXX and 47,XYY. AMA may be a risk factor of having a foetus with SCA. Our findings may assist in genetic counselling of AMA pregnant women. Our pre- and posttest counselling are essential for familiarizing pregnant women with the benefits and limitations of NIPT, which may ease their anxiety and enable them to make informed choices for further diagnosis and pregnancy decisions.

Tài liệu tham khảo

Zhang B, Lu BY, Yu B, et al. Noninvasive prenatal screening for fetal common sex chromosome aneuploidies from maternal blood. J Int Med Res. 2017;45(2):621–30. Zhu Y, Lu S, Bian X, et al. A multicenter study of fetal chromosomal abnormalities in Chinese women of advanced maternal age. Taiwan J Obstet Gynecol. 2016;55(3):379–84. Mavridi A, Ntali G, Theodora M, Stamatelopoulos K, Michala L. A spontaneous pregnancy in a patient with turner syndrome with 45, X/47, XXX Mosaicism: a case report and review of the literature. J Pediatr Adolesc Gynecol. 2018;31(6):651–4. Lim HH, Kil HR, Koo SH. Incidence, puberty, and fertility in 45, X/47, XXX mosaicism: report of a patient and a literature review. Am J Med Genet A. 2017;173(7):1961–4. Rafique M, AlObaid S, Al-Jaroudi D. 47, XXX syndrome with infertility, premature ovarian insufficiency, and streak ovaries. Clin Case Rep. 2019;7(6):1238–41. Davis SM, Rogol AD, Ross JL. Testis development and fertility potential in boys with klinefelter syndrome. Endocrinol Metab Clin North Am. 2015;44(4):843–65. Samango-Sprouse CA, Counts DR, Tran SL, Lasutschinkow PC, Porter GF, Gropman AL. Update on the clinical perspectives and care of the child with 47, XXY (Klinefelter Syndrome). Appl Clin Genet. 2019;12:191–202. Matsuzaki J, Bloy L, Blaskey L, et al. Abnormal auditory mismatch fields in children and adolescents with 47. XYY Syndrom Dev Neurosci. 2019;41(1–2):123–31. Samango-Sprouse C, Lasutschinkow P, Powell S, et al. The incidence of anxiety symptoms in boys with 47, XXY (Klinefelter syndrome) and the possible impact of timing of diagnosis and hormonal replacement therapy. Am J Med Genet A. 2019;179(3):423–8. Samango-Sprouse CA, Porter GF, Lasutschinkow PC, et al. Impact of early diagnosis and noninvasive prenatal testing (NIPT): knowledge, attitudes, and experiences of parents of children with sex chromosome aneuploidies (SCAs). Prenat Diagn. 2020;40(4):470–80. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350(9076):485–7. Chen Y, Yu Q, Mao X, Lei W, He M, Lu W. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 42,910 single pregnancies with different clinical features. Hum Genom. 2019;13(1):60. Xu Y, Chen L, Liu Y, Hao Y, Xu Z, Deng L, Xie J. Screening, prenatal diagnosis, and prenatal decision for sex chromosome aneuploidy. Exp Rev Molecular Diagnost. 2019;19(6):537–42. Taylor-Phillips S, Freeman K, Geppert J, et al. Accuracy of non-invasive prenatal testing using cell-free DNA for detection of Down, Edwards and Patau syndromes: a systematic review and meta-analysis. BMJ Open. 2016;6(1):e010002. Hu H, Wang L, Wu J, et al. Non-invasive prenatal testing for chromosome aneuploidies and sub chromosomal microdeletions/microduplications in a cohort of 8141 single pregnancies[J]. Human Genom. 2019;13(1):1–9. Cuckle H, Benn P, Pergament EJCB. Cell-free DNA screening for fetal aneuploidy as a clinical service. Clin Biochem. 2015;48(15):932–41. Bevilacqua E, Ordóñez E, Hurtado I, et al. Screening for sex chromosome aneuploidy by cell-free DNA testing: patient choice and performance. Fetal Diagn Ther. 2018;44(2):98–104. Petersen AK, Cheung SW, Smith JL, et al. Positive predictive value estimates for cell-free noninvasive prenatal screening from data of a large referral genetic diagnostic laboratory. Am J Obstet Gynecol. 2017;217(6):691.e1–6. Wang Y, Li S, Wang W, Dong Y, Zhang M, Wang X, Yin C. Cell-free DNA screening for sex chromosome aneuploidies by non-invasive prenatal testing in maternal plasma. Mol Cytogenet. 2020;12(13):10. Ramdaney A, Hoskovec J, Harkenrider J, et al. Clinical experience with sex chromosome aneuploidies detected by noninvasive prenatal testing (NIPT): accuracy and patient decision making. Prenat Diag. 2018;38:841–8. Wang Y, Chen Y, Tian F, et al. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin Chem. 2014;60(1):251–9. Song Y, Liu C, Qi H, et al. Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population. Prenat Diag. 2013;38:700–6. Lau TK, Jiang FM, Stevenson RJ, et al. Secondray finding from non-invasive prenatal testing for common fetal aneuploidies by whole genome sequencing as a clinical service. Print Diagn. 2013;33:602–8. Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta. 2014;35:S64–8. Grati FR, Bajaj K, Malvestiti F, et al. The type of feto-placental aneuploidy detected by cfDNA testing may influence the choice of confirmatory diagnostic procedure. Prenat Diagn. 2015;35(10):994–8. So PL, Cheng KYY, Cheuk KY, et al. Parental decisions following prenatal diagnosis of sex chromosome aneuploidy in Hong Kong. J Obstet Gynaecol Res. 2017;43(12):1821–9. Gruchy N, Vialard F, Blondeel E, et al. Pregnancy outcomes of prenatally diagnosed turner syndrome: a French multicenter retrospective study including a series of 975 cases. Prenat Diagn. 2014;34(12):1133–8. Zhou Q, Zhu ZP, Zhang B, Yu B, Cai ZM, Yuan P. Clinical features and pregnancy outcomes of women with abnormal cell-free fetal DNA test results. Ann Transl Med. 2019;7(14):317. Zheng J, Lu H, Li M, et al. The clinical utility of non-invasive prenatal testing for pregnant women with different diagnostic indications. Front Genet. 2020;11:624. Howard-Bath A, Poulton A, Halliday J, et al. Population-based trends in the prenatal diagnosis of sex chromosome aneuploidy before and after non-invasive prenatal testing. Prenat Diagn. 2018;38(13):1062–8. Nicolaides KH, Musci TJ, Struble CA, Singelaki A, Gil MM. Assessment of fetal sex chromosome aneuploidy using directed cell-free DNA analysis. Fetal Diagn Ther. 2014;35:1–6. Huang CE, Ma GC, Jou HJ, et al. Noninvasive prenatal diagnosis of fetal aneuploidy by circulating fetal nucleated red blood cells and extravillous trophoblasts using silicon-based nanostructured microfluidics. Mol Cytogenet. 2017;10:44. Vossaert L, Wang Q, Salman R, et al. Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat Diagn. 2018;38(13):1069–78. Sun K, Lun FMF, Leung TY, et al. Noninvasive reconstruction of placental methylome from maternal plasma DNA: potential for prenatal testing and monitoring. Prenat Diagn. 2018;38(3):196–203. Ahman A, Axelsson O, Maras G, Rubertsson C, Sarkadi A, Lindgren P. Ultrasonographic fetal soft markers in a low-risk population: prevalence, association with trisomies and invasive tests. Acta Obstet Gynecol Scand. 2014;93(4):367–73. Hsiao CH, Cheng PJ, Shaw SW, et al. Extended first-trimester screening using multiple sonographic markers and maternal serum biochemistry: a five-year prospective study. Fetal Diagn Ther. 2014;35(4):296–301. Maya I, Yacobson S, Kahana S, et al. Cut-off value of nuchal translucency as indication for chromosomal microarray analysis. Ultrasound Obstet Gynecol. 2017;50(3):332–5. Zhang H, Zhao YY, Song J, et al. Statistical approach to decreasing the error rate of noninvasive prenatal aneuploid detection caused by maternal copy number variation. Sci Rep. 2015;5:16106.