Non-parametric Methods for Doubly Robust Estimation of Continuous Treatment Effects
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bickel, 1993, Efficient and Adaptive Estimation for Semiparametric Models
Díaz, 2012, Population intervention causal effects based on stochastic interventions, Biometrics, 68, 541, 10.1111/j.1541-0420.2011.01685.x
Díaz, 2013, Targeted data adaptive estimation of the causal dose-response curve, J. Causl Inf., 1, 171, 10.1515/jci-2012-0005
Fan, 1996, Local Polynomial Modelling and Its Applications
Galvao, 2015, Uniformly semiparametric efficient estimation of treatment effects with a continuous treatment, J. Am. Statist. Ass., 110, 1528, 10.1080/01621459.2014.978005
Gill, 2001, Causal inference for complex longitudinal data: the continuous case, Ann. Statist., 29, 1785, 10.1214/aos/1015345962
Härdle, 1988, How far are automatically chosen regression smoothing parameters from their optimum?, J. Am. Statist. Ass., 83, 86
Hill, 2011, Bayesian nonparametric modeling for causal inference, J. Computnl Graph. Statist., 20, 217, 10.1198/jcgs.2010.08162
Hirano, 2004, Applied Bayesian Modeling and Causal Inference from Incomplete-data Perspectives, 73, 10.1002/0470090456.ch7
Imai, 2004, Causal inference with general treatment regimes, J. Am. Statist. Ass., 99, 854, 10.1198/016214504000001187
Imbens, 2004, Nonparametric estimation of average treatment effects under exogeneity: a review, Rev. Econ. Statist., 86, 4, 10.1162/003465304323023651
Kang, 2007, Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data, Statist. Sci., 22, 523
van der Laan, 2003, Unified cross-validation methodology for selection among estimators and a general cross-validated adaptive epsilon-net estimator: finite sample oracle inequalities and examples
van der Laan, 1998, Locally efficient estimation with current status data and time-dependent covariates, J. Am. Statist. Ass., 93, 693, 10.1080/01621459.1998.10473721
van der Laan, 2003, Unified Methods for Censored Longitudinal Data and Causality, 10.1007/978-0-387-21700-0
van der Laan, 2011, Targeted Learning: Causal Inference for Observational and Experimental Data, 10.1007/978-1-4419-9782-1
van der Laan, 2001, Comments on inference for semiparametric models: some questions and an answer, Statist. Sin., 11, 910
Li, 2004, Cross-validated local linear nonparametric regression, Statist. Sin., 14, 485
Li, 2007, Nonparametric Econometrics: Theory and Practice
McHugh, 2013, Hospitals with higher nurse staffing had lower odds of readmissions penalties than hospitals with lower staffing, Hlth Aff., 32, 1740, 10.1377/hlthaff.2013.0613
Neugebauer, 2007, Nonparametric causal effects based on marginal structural models, J. Statist. Planng Inf., 137, 419, 10.1016/j.jspi.2005.12.008
Robins, 2000, Statistical Models in Epidemiology, the Environment, and Clinical Trials, 95, 10.1007/978-1-4612-1284-3_2
Robins, 2001, Comments on inference for semiparametric models: some questions and an answer, Statist. Sin., 11, 920
Rubin, 1974, Estimating causal effects of treatments in randomized and nonrandomized studies, J. Educ. Psychol., 66, 688, 10.1037/h0037350
Rubin, 2005, A general imputation methodology for nonparametric regression with censored data
Rubin, 2006, Doubly robust censoring unbiased transformations
Rubin, 2006, Extending marginal structural models through local, penalized, and additive learning
Tsiatis, 2006, Semiparametric Theory and Missing Data
van der Vaart, 2000, Asymptotic Statistics
van der Vaart, 2014, Higher order tangent spaces and influence functions, Statist. Sci., 29, 679, 10.1214/14-STS478
van der Vaart, 2006, Estimating a survival distribution with current status data and high-dimensional covariates, Int. J. Biostatist., 2, 1, 10.2202/1557-4679.1014
Wang, 2010, Nonparametric regression with missing outcomes using weighted kernel estimating equations, J. Am. Statist. Ass., 105, 1135, 10.1198/jasa.2010.tm08463
Wasserman, 2006, All of Nonparametric Statistics