Non-invasive urine testing of EGFR activating mutation and T790M resistance mutation in non-small cell lung cancer

Experimental Hematology & Oncology - Tập 5 - Trang 1-6 - 2016
David Berz1, Victoria M. Raymond2, Jordan H. Garst2, Mark G. Erlander2
1Beverly Hills Cancer Center, Beverly Hills, USA
2Trovagene Inc., San Diego, USA

Tóm tắt

The increasing understanding of non-small cell lung cancer (NSCLC) biology over the last two decades has led to the identification of multiple molecular targets. This led to the development of multiple targeted therapies in the primary and secondary resistance setting and the epidermal growth factor receptor (EGFR) gene remains the most frequently observed molecular target in NSCLC. Tissue biopsies remain the standard for the identification of such EGFR mutations. Obtaining serial tissue biopsies, especially in the secondary resistance setting is associated with multiple medical and logistical challenges. Utilizing circulating tumor DNA (ctDNA) fragments for molecular analysis can overcome these challenges and aid in therapeutic decision-making. Here we present a present a 72-year-old Korean woman with metastatic, EGFR L858R mutated bronchogenic adenocarcinoma. She developed skeletal progression on treatment with first and second generation tyrosine kinase inhibitors (TKIs). Repeated biopsies failed to provide informative molecular test results. A novel urine ctDNA assay was utilized and confirmed T790M positive status. The patient was started on a third generation TKI, which led to a measurable clinical response. Utilization of urine liquid biopsies for EGFR diagnostics are feasible and provided critical clinical information in this patient’s case. Urine liquid biopsy represents a viable alternative to tissue biopsy, particularly in the secondary resistance setting, when tissue is not available for molecular testing.

Tài liệu tham khảo

Imielinski M, Berger AH, Hammerman PS, et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell. 2012;150(6):1107–20. doi:10.1016/j.cell.2012.08.029. Rosell R, Moran T, Queralt C, et al. Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med. 2009;361(10):958–67. doi:10.1056/NEJMoa0904554. Collisson EA, Campbell JD, Brooks AN, et al. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50. doi:10.1038/nature13385. Shi Y, Au JS-K, Thongprasert S, et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol. 2014;9(2):154–62. doi:10.1097/JTO.0000000000000033. Russo A, Franchina T, Ricciardi GRR, et al. A decade of EGFR inhibition in EGFR-mutated non small cell lung cancer (NSCLC): old successes and future perspectives. Oncotarget. 2015;6(29):26814–25. doi:10.18632/oncotarget.4254. Maemondo M, Inoue A, Kobayashi K, et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med. 2010;362(25):2380–8. doi:10.1056/NEJMoa0909530. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012;13(3):239–46. doi:10.1016/S1470-2045(11)70393-X. Sequist LV, Yang JC-H, Yamamoto N, et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol. 2013;31(27):3327–34. doi:10.1200/JCO.2012.44.2806. Wu Y-L, Zhou C, Hu C-P, et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 2014;15(2):213–22. doi:10.1016/S1470-2045(13)70604-1. Camidge DR, Pao W, Sequist LV. Acquired resistance to TKIs in solid tumours: learning from lung cancer. Nat Rev Clin Oncol. 2014;11(8):473–81. doi:10.1038/nrclinonc.2014.104. Piotrowska Z, Sequist LV. Epidermal growth factor receptor-mutant lung cancer: new drugs, new resistance mechanisms, and future treatment options. Cancer J. 2015;21(5):371–7. doi:10.1097/PPO.0000000000000147. Walter AO, Sjin RTT, Haringsma HJ, et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013;3(12):1404–15. doi:10.1158/2159-8290.CD-13-0314. Jänne PA, Yang JC-H, Kim D-W, et al. AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer. N Engl J Med. 2015;372(18):1689–99. doi:10.1056/NEJMoa1411817. Sequist LV, Rolfe L, Allen AR. Rociletinib in EGFR-mutated non-small-cell lung cancer. N Engl J Med. 2015;373(6):578–9. doi:10.1056/NEJMc1506831. Salgia R. Diagnostic challenges in non-small-cell lung cancer: an integrated medicine approach. Futur Oncol. 2015;11(3):489–500. doi:10.2217/fon.14.275. Gilbert MTP, Haselkorn T, Bunce M, et al. The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS One. 2007;2(6):e537. doi:10.1371/journal.pone.0000537. Aran D, Sirota M, Butte AJ. Systematic pan-cancer analysis of tumour purity. Nat Commun. 2015;6:8971. doi:10.1038/ncomms9971. MacConaill LE, Campbell CD, Kehoe SM, et al. Profiling critical cancer gene mutations in clinical tumor samples. PLoS One. 2009;4(11):e7887. doi:10.1371/journal.pone.0007887. Lokhandwala T, Dann R, Johnson M, D’Souza A. Costs of the diagnostic workup for lung cancer: a medicare claims analysis. In: Chicago multidisciplinary symposium in thoracic oncology. 2014. https://www.astro.org/uploadedFiles/Main_Site/News_and_Media/Media_Resources/Press_Kits/Thoracic_2014/Lokhandwala_103_formatted_slides.pdf. Accessed Apr 2016. Meric-Bernstam F, Brusco L, Shaw K, et al. Feasibility of large-scale genomic testing to facilitate enrollment onto genomically matched clinical trials. J Clin Oncol. 2015;33(25):2753–62. doi:10.1200/JCO.2014.60.4165. Diaz LA, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol. 2014;32(6):579–86. doi:10.1200/JCO.2012.45.2011. Murtaza M, Dawson S-J, Tsui DWY, et al. Non-invasive analysis of acquired resistance to cancer therapy by sequencing of plasma DNA. Nature. 2013;497(7447):108–12. doi:10.1038/nature12065. Wang Z, Chen R, Wang S, et al. Quantification and dynamic monitoring of EGFR T790M in plasma cell-free DNA by digital PCR for prognosis of EGFR-TKI treatment in advanced NSCLC. PLoS One. 2014;9(11):e110780. doi:10.1371/journal.pone.0110780. Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra68. doi:10.1126/scitranslmed.3003726. Swarup V, Rajeswari MR. Circulating (cell-free) nucleic acids—a promising, non-invasive tool for early detection of several human diseases. FEBS Lett. 2007;581(5):795–9. doi:10.1016/j.febslet.2007.01.051. Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6:147–54. doi:10.1158/2159-8290.CD-15-1283. Su Y-H, Wang M, Brenner DE, et al. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer. J Mol Diagn. 2004;6(2):101–7. doi:10.1016/S1525-1578(10)60497-7. Hyman DM, Diamond EL, Vibat CRT, et al. Prospective blinded study of BRAFV600E mutation detection in cell-free DNA of patients with systemic histiocytic disorders. Cancer Discov. 2015;5(1):64–71. doi:10.1158/2159-8290.CD-14-0742. Janku F, Vibat CRT, Kosco K, et al. BRAF V600E mutations in urine and plasma cell-free DNA from patients with Erdheim–Chester disease. Oncotarget. 2014;5(11):3607–10. doi:10.18632/oncotarget.1964. Reckamp K, Melnikova VO, Karlovich C, et al. A highly sensitive and quantitative test platform for detection of NSCLC EGFR mutations in urine and plasma. J Thorac Oncol. 2016. doi:10.1016/j.jtho.2016.05.035. Wakelee HA, Gadgeel SM, Goldman JW, et al. Epidermal growth factor receptor (EGFR) genotyping of matched urine, plasma and tumor tissue from non-small cell lung cancer (NSCLC) patients (pts) treated with rociletinib. In: American society of clinical oncology annual meeting. J Thorac Oncol. 2016. pii:S1556-0864(16)30587-1. doi:10.1016/j.jtho.2016.05.035. Pereira E, Camacho-Vanegas O, Anand S, et al. Personalized circulating tumor DNA biomarkers dynamically predict treatment response and survival in gynecologic cancers. PLoS One. 2015;10(12):e0145754. doi:10.1371/journal.pone.0145754. Uchida J, Imamura F, Kukita Y, et al. Dynamics of circulating tumor DNA represented by the activating and resistant mutations in the EGFR-TKI treatment. Cancer Sci. 2015. doi:10.1111/cas.12860. Zheng D, Ye X, Zhang MZ, et al. Plasma EGFR T790M ctDNA status is associated with clinical outcome in advanced NSCLC patients with acquired EGFR-TKI resistance. Sci Rep. 2016;6:20913. doi:10.1038/srep20913. Husain H, Kosco K, Vibat CR, et al. Kinetic Monitoring of EGFR Exon 19 del, L858R, and T790M in urinary circulating tumor dna predicts radiographic progression and response in patients with metastatic lung adenocarcinoma. In: World conference on lung cancer. 2015.