Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer

Planta - 2020
Lee Sanchez1, Alexei Ermolenkov1, Xiao‐Tian Tang2, Cécilia Tamborindeguy2, Dmitry Kurouski1
1Department of Biochemistry and Biophysics, Texas A&M University, College Station, USA
2Department of Entomology, Texas A&M University, College Station, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adar F (2017) Carotenoids—their resonance Raman spectra and how they can be helpful in characterizing a number of biological systems. Spectroscopy 32(6):12–20

Agarwal UP (2006) Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea mariana). Planta 224(5):1141–1153. https://doi.org/10.1007/s00425-006-0295-z

Agarwal UP (2014) 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front Plant Sci 5:1–12

Almeida MR, Alves RS, Nascimbem LB, Stephani R, Poppi RJ, de Oliveira LF (2010) Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 397(7):2693–2701. https://doi.org/10.1007/s00216-010-3566-2

Alvarez AM, Benedict AA, Mizumoto CY, Pollard LW, Civerolo EL (1991) Analysis of Xanthomonas campestris pv citri and X. c. citrumelo with monoclonal-antibodies. Phytopathology 81:857–865

Cao Y, Shen D, Lu Y, Huang J (2006) A Raman-scattering study on the net orientation of biomacromolecules in the outer epidermal walls of mature wheat stems (Triticum aestivum). Ann Bot 97:1091–1094

Civerolo EL, Fan F (1982) Xanthomonas campestris pv citri detection and identification by enzyme-linked immunosorbent-assay. Plant Dis 66:231–236

Cubero J, Graham JH (2002) Genetic relationship among worldwide strains of Xanthomonas causing canker in citrus species and de-sign of new primers for their identification by PCR. Appl Environ Microbiol 68:1257–1264

Devitt G, Howard K, Mudher A, Mahajan S (2018) Raman spectroscopy: an emerging tool in neurodegenerative disease research and diagnosis. ACS Chem Neurosci 9:404–420. https://doi.org/10.1021/acschemneuro.7b00413

Edwards HGM, Farwell DW, Webster D (1997a) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53A(13):2383–2392

Edwards HGM, Farwell DW, Webster D (1997b) FT Raman microscopy of untreated natural plant fibres. Spectrochim Acta A 53(13):2383–2392. https://doi.org/10.1016/S1386-1425(97)00178-9

Egging V, Nguyen J, Kurouski D (2018) Detection and identification of fungal infections in intact wheat and sorghum grain using a hand-held Raman spectrometer. Anal Chem 90(14):8616–8621. https://doi.org/10.1021/acs.analchem.8b01863

Farber C, Kurouski D (2018) Detection and identification of plant pathogens on maize kernels with a hand-held Raman spectrometer. Anal Chem 90(5):3009–3012. https://doi.org/10.1021/acs.analchem.8b00222

Glynn J, Islam M, Bai Y, Lan S, Wen A, Gudmestad N, Civerolo E, Lin H (2012) Multilocus sequence typing of ‘Candidatus Liberibacter solanacearum’ isolates from North America and New Zealand. Plant Pathol J 94(1):223–228

Golmohammadi M, Cubero J, Penalver J, Quesada JM, Lopez MM, Llop P (2007) Diagnosis of Xanthomonas axonopodis pv. citri, causal agent of citrus canker, in commercial fruits by isolation and PCR-based methods. J Appl Microbiol 103(6):2309–2315. https://doi.org/10.1111/j.1365-2672.2007.03484.x

Haapalainen ML, Wang J, Latvala S, Lehtonen MT, Pirhonen M, Nissinen AI (2018) Genetic variation of ‘Candidatus Liberibacter solanacearum’ haplotype C and identification of a novel haplotype from Trioza urticae and stinging nettle. Phytopathology 108:925–934

Harrison K, Tamborindeguy C, Scheuring DC, Herrera AM, Silva A, Badillo-Vargas IE, Miller JC, Levy JG (2019) Differences in zebra chip severity between ‘Candidatus Liberibacter solanacearum’ haplotypes in Texas. Am J Potato Res 96(1):86–93

Kang L, Wang K, Li X, Zou B (2016) High pressure structural investigation of benzoic acid: Raman spectroscopy and x-ray diffraction. J Phys Chem C 120(27):14758–14766. https://doi.org/10.1021/acs.jpcc.6b05001

Kurouski D, Van Duyne RP, Lednev IK (2015) Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review. Analyst 140(15):4967–4980. https://doi.org/10.1039/c5an00342c

Levy J, Ravindran A, Gross D, Tamborindeguy C, Pierson E (2011) Translocation of ‘Candidatus Liberibacter solanacearum’, the zebra chip pathogen, in potato and tomato. Phytopathology 101(11):1285–1291

Li W, Abad JA, French-Monar RD, Rascoe J, Wen A, Gudmestad NC, Secor GA, Lee M, Duan Y, Levy L (2009) Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J Microbiol Methods 78(1):59–65

Liefting LW, Sutherland PW, Ward LI, Paice KL, Weir BS, Clover GR (2009a) A new ‘Candidatus Liberibacter’ species associated with diseases of solanaceous crops. Plant Dis 93(3):208–214

Liefting LW, Weir BS, Pennycook SR, Clover GR (2009b) ‘Candidatus Liberibacter solanacearum’, associated with plants in the family Solanaceae. Int J Syst Evol Microbiol 59(9):2274–2276

Lin H, Islam MS, Bai Y, Wen A, Lan S, Gudmestad NC, Civerolo EL (2012) Genetic diversity of ‘Cadidatus Liberibacter solanacearum’ strains in the United States and Mexico revealed by simple sequence repeat markers. Eur J Plant Pathol 132(2):297–308

Liu D, Trumble JT (2004) Tomato psyllid behavioral responses to tomato plant lines and interactions of plant lines with insecticides. J Econ Entomol 97(3):1078–1085

Mahnke M, Farber C, Sanchez L, Kurouski D (2019a) Advanced spectroscopic techniques for plant disease diagnostics: a review. Trends Analyt Chem 118:43–49

Mahnke M, Farber C, Sanchez L, Kurouski D (2019b) Advanced spectroscopic techniques for plant disease diagnostics: a review. Trends Anal Chem 118:43–49

Mary YS, Panicker CY, Varghese HT (2012) Vibrational Spectroscopic Investigations of 4-nitropyrocatechol. Orient J Chem 28(2):937–941

Nachappa P, Levy J, Pierson E, Tamborindeguy C (2014) Correlation between “Candidatus Liberibacter solanacearum” infection levels and fecundity in its psyllid vector. J Invertebr Pathol 115:55–61

Nelson WR, Sengoda VG, Alfaro-Fernandez AO, Font MI, Crosslin JM, Munyaneza JE (2013) A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur J Plant Pathol 135(4):633–639

Ravindran A, Levy J, Pierson E, Gross DC (2012) Development of a loop-mediated isothermal amplification procedure as a sensitive and rapid method for detection of 'candidatus Liberibacter solanacearum' in potatoes and Psyllids. Phytopathology 102(9):899–907. https://doi.org/10.1094/phyto-03-12-0055-r

Sanchez L, Farber C, Lei J, Zhu-Salzman K, Kurouski D (2019a) Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer. Anal Chem 91(3):1733–1737. https://doi.org/10.1021/acs.analchem.8b05555

Sanchez L, Pant S, Xing Z, Mandadi K, Kurouski D (2019b) Rapid and noninvasive diagnostics of Huanglongbing and nutrient deficits on citrus trees with a handheld Raman spectrometer. Anal Bioanal Chem 411:3125–3133

Swisher Grimm K, Garczynski S (2019) Identification of a New Haplotype of ‘Candidatus Liberibacter solanacearum’ in Solanum tuberosum. Plant Dis 103(3):468–474

Synytsya A, Čopíková J, Matějka P, Machovič V (2003) Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr Polym 54:97–106

Tamborindeguy C, Huot OB, Ibanez F, Levy J (2017) The influence of bacteria on multi-trophic interactions among plants, psyllids, and pathogen. Insect Sci 24:961–974

Trumble J (2009) Potato psyllid. Center for Invasive Species Research, University of California Riverside, California

Tschirner N, Brose K, Schenderlein M, Zouni A, Schlodder E, Mroginski MA, Hildebrandt P, Thomsen C (2009) The anomaly of the ν1-resonance Raman band of bβ-carotene in solution and in photosystem I and II. Phys Status Solidi (b) 246(11–12):2790–2793. https://doi.org/10.1002/pssb.200982299

Yao J, Saenkham P, Levy J, Ibanez F, Noroy C, Mendoza A, Huot O, Meyer DF, Tamborindeguy C (2016) Interactions ‘Candidatus Liberibacter solanacearum’—Bactericera cockerelli: haplotype effect on vector fitness and gene expression analyses. Front Cell Infect Microbiol 6:62

Yu MM, Schulze HG, Jetter R, Blades MW, Turner RF (2007) Raman microspectroscopic analysis of triterpenoids found in plant cuticles. Appl Spectrosc 61(1):32–37. https://doi.org/10.1366/000370207779701352