Các enzyme đồng chức năng không đồng nguồn gốc: Phân tích hệ thống về các giải pháp thay thế trong tiến hóa enzyme

Marina V. Omelchenko1, Michael Y. Galperin1, Yuri I. Wolf1, Eugene V. Koonin1
1National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA

Tóm tắt

Tóm tắtThông tin nền

Các protein không liên hệ về mặt tiến hóa nhưng xúc tác các phản ứng sinh hóa giống nhau thường được gọi là các enzyme tương tự - trái ngược với các enzyme đồng nguồn gốc. Sự tồn tại của nhiều isoform enzyme thay thế, không đồng nguồn gốc, gây ra một vấn đề tiến hóa thú vị; đồng thời cũng làm phức tạp việc tái tạo lại các con đường chuyển hóa dựa trên genom ở nhiều loài sinh vật khác nhau. Năm 1998, một cuộc tìm kiếm hệ thống các enzyme tương tự đã dẫn đến việc xác định 105 số số hiệu ủy ban enzyme (EC), trong đó có hai hoặc nhiều protein không có sự tương đồng về chuỗi được phát hiện với nhau, bao gồm 34 nút EC mà protein được biết (hoặc dự đoán) có cấu trúc gập riêng biệt, cho thấy nguồn gốc tiến hóa độc lập. Trong 12 năm qua, nhiều enzyme đồng chức năng không đồng nguồn gốc khả thi đã được xác định trong các genom mới được giải mã. Hơn nữa, những nỗ lực trong di truyền cấu trúc đã tạo ra sự bao phủ cấu trúc được cải thiện mạnh mẽ của các proteome, cung cấp đánh giá chắc chắn về mối quan hệ (không) đồng nguồn gốc giữa các protein.

Kết quả

Chúng tôi báo cáo kết quả của một cuộc tìm kiếm toàn diện cho các enzyme đồng chức năng không đồng nguồn gốc (NISE) đã thu được 185 nút EC với hai hoặc nhiều protein không có cấu trúc liên quan đã được nghiên cứu thực nghiệm - hoặc được dự đoán. Trong số các bộ NISE này, chỉ có 74 bộ nằm trong danh sách gốc năm 1998. Các phân bổ cấu trúc của NISE cho thấy sự đại diện quá mức của các protein có cấu trúc ống TIM và cấu trúc liên kết nucleotide Rossmann. Từ góc độ chức năng, bộ NISE này giàu các hydrolase, đặc biệt là các hydrolase carbohydrate, và các enzyme tham gia vào việc phòng thủ chống lại căng thẳng oxy hóa.

Kết luận

Các kết quả này chỉ ra rằng ít nhất một số enzyme đồng chức năng không đồng nguồn gốc được tuyển dụng tương đối gần đây từ các gia đình enzyme hoạt động chống lại các chất nền liên quan và có đủ độ linh hoạt để thích ứng với những thay đổi trong độ đặc hiệu của chất nền.

Người đánh giá

Bài viết này đã được đánh giá bởi Andrei Osterman, Keith F. Tipton (được đề cử bởi Martijn Huynen) và Igor B. Zhulin. Để xem toàn bộ đánh giá, hãy chuyển đến phần bình luận của người đánh giá.

Từ khóa


Tài liệu tham khảo

Doolittle RF: Convergent evolution: the need to be explicit. Trends Biochem Sci. 1994, 19: 15-18. 10.1016/0968-0004(94)90167-8.

Stallings WC, Powers TB, Pattridge KA, Fee JA, Ludwig ML: Iron superoxide dismutase from Escherichia coli at 3.1-Å resolution: a structure unlike that of copper/zinc protein at both monomer and dimer levels. Proc Natl Acad Sci USA. 1983, 80: 3884-3888. 10.1073/pnas.80.13.3884.

Koonin EV, Galperin MY: Sequence - Evolution - Function. Computational Approaches in Comparative Genomics. 2002, Boston: Kluwer Academic Publishers

Fitch WM: Distinguishing homologous from analogous proteins. Syst Zool. 1970, 19: 99-113. 10.2307/2412448.

Florkin M: Concepts of molecular biosemiotics and of molecular evolution. Comprehensive Biochemistry. Edited by: Florkin M, Stolz EH. 1974, Amsterdam, the Netherlands: Elsevier, 29A: 1-124.

Galperin MY, Walker DR, Koonin EV: Analogous enzymes: independent inventions in enzyme evolution. Genome Res. 1998, 8: 779-790.

Richardson J, Thomas KA, Rubin BH, Richardson DC: Crystal structure of bovine Cu, Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc Natl Acad Sci USA. 1975, 72: 1349-1353. 10.1073/pnas.72.4.1349.

Wuerges J, Lee JW, Yim YI, Yim HS, Kang SO, Djinovic Carugo K: Crystal structure of nickel-containing superoxide dismutase reveals another type of active site. Proc Natl Acad Sci USA. 2004, 101: 8569-8574. 10.1073/pnas.0308514101.

Carter C, Thornburg RW: Tobacco nectarin I. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem. 2000, 275: 36726-36733. 10.1074/jbc.M006461200.

Galperin MY, Koonin EV: Functional genomics and enzyme evolution. Homologous and analogous enzymes encoded in microbial genomes. Genetica. 1999, 106: 159-170. 10.1023/A:1003705601428.

Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, Schmidt S, Snel B, Bork P: Systematic discovery of analogous enzymes in thiamin biosynthesis. Nat Biotechnol. 2003, 21: 790-795. 10.1038/nbt834.

Polekhina G, Board PG, Gali RR, Rossjohn J, Parker MW: Molecular basis of glutathione synthetase deficiency and a rare gene permutation event. EMBO J. 1999, 18: 3204-3213. 10.1093/emboj/18.12.3204.

Claudel-Renard C, Chevalet C, Faraut T, Kahn D: Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res. 2003, 31: 6633-6639. 10.1093/nar/gkg847.

Otto TD, Guimaraes AC, Degrave WM, de Miranda AB: AnEnPi: identification and annotation of analogous enzymes. BMC Bioinformatics. 2008, 9: 544-10.1186/1471-2105-9-544.

Chandonia JM, Brenner SE: The impact of structural genomics: expectations and outcomes. Science. 2006, 311: 347-351. 10.1126/science.1121018.

Terwilliger TC, Stuart D, Yokoyama S: Lessons from structural genomics. Annu Rev Biophys. 2009, 38: 371-383. 10.1146/annurev.biophys.050708.133740.

Huerta C, Borek D, Machius M, Grishin NV, Zhang H: Structure and mechanism of a eukaryotic FMN adenylyltransferase. J Mol Biol. 2009, 389: 388-400. 10.1016/j.jmb.2009.04.022.

Vong QP, Cao K, Li HY, Iglesias PA, Zheng Y: Chromosome alignment and segregation regulated by ubiquitination of survivin. Science. 2005, 310: 1499-1504. 10.1126/science.1120160.

Pentz ES, Wright TR: Drosophila melanogaster diphenol oxidase A2: gene structure and homology with the mouse mast-cell tum-transplantation antigen, P91A. Gene. 1991, 103: 239-242. 10.1016/0378-1119(91)90279-K.

Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y: KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36: D480-D484. 10.1093/nar/gkm882.

Kotera M, Okuno Y, Hattori M, Goto S, Kanehisa M: Computational assignment of the EC numbers for genomic-scale analysis of enzymatic reactions. J Am Chem Soc. 2004, 126: 16487-16498. 10.1021/ja0466457.

Yamanishi Y, Hattori M, Kotera M, Goto S, Kanehisa M: E-zyme: predicting potential EC numbers from the chemical transformation pattern of substrate-product pairs. Bioinformatics. 2009, 25: i179-i186. 10.1093/bioinformatics/btp223.

Hubbard BK, Koch M, Palmer DR, Babbitt PC, Gerlt JA: Evolution of enzymatic activities in the enolase superfamily: characterization of the (D)-glucarate/galactarate catabolic pathway in Escherichia coli. Biochemistry. 1998, 37: 14369-14375. 10.1021/bi981124f.

Kehrer D, Ahmed H, Brinkmann H, Siebers B: Glycerate kinase of the hyperthermophilic archaeon Thermoproteus tenax: new insights into the phylogenetic distribution and physiological role of members of the three different glycerate kinase classes. BMC Genomics. 2007, 8: 301-10.1186/1471-2164-8-301.

Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG: Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 2008, 36: D419-D425. 10.1093/nar/gkm993.

Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28: 33-36. 10.1093/nar/28.1.33.

Doolittle RF, Feng DF, Johnson MS, McClure MA: Relationships of human protein sequences to those of other organisms. Cold Spring Harbor Symp Quant Biol. 1986, 51: 447-455.

Wierenga RK: The TIM-barrel fold: a versatile framework for efficient enzymes. FEBS Lett. 2001, 492: 193-198. 10.1016/S0014-5793(01)02236-0.

Nagano N, Orengo CA, Thornton JM: One fold with many functions: the evolutionary relationships between TIM barrel families based on their sequences, structures and functions. J Mol Biol. 2002, 321: 741-765. 10.1016/S0022-2836(02)00649-6.

Jensen RA: Enzyme recruitment in evolution of new function. Annu Rev Microbiol. 1976, 30: 409-425. 10.1146/annurev.mi.30.100176.002205.

Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer EL, Bateman A: The Pfam protein families database. Nucleic Acids Res. 2008, 36: D281-D288. 10.1093/nar/gkm960.

Leipe DD, Koonin EV, Aravind L: Evolution and classification of P-loop kinases and related proteins. J Mol Biol. 2003, 333: 781-815. 10.1016/j.jmb.2003.08.040.

Daugherty M, Vonstein V, Overbeek R, Osterman A: Archaeal shikimate kinase, a new member of the GHMP-kinase family. J Bacteriol. 2001, 183: 292-300. 10.1128/JB.183.1.292-300.2001.

Ibba M, Morgan S, Curnow AW, Pridmore DR, Vothknecht UC, Gardner W, Lin W, Woese CR, Söll D: A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science. 1997, 278: 1119-1122. 10.1126/science.278.5340.1119.

Ibba M, Bono JL, Rosa PA, Söll D: Archaeal-type lysyl-tRNA synthetase in the Lyme disease spirochete Borrelia burgdorferi. Proc Natl Acad Sci USA. 1997, 94: 14383-14388. 10.1073/pnas.94.26.14383.

Verhees CH, Huynen MA, Ward DE, Schiltz E, de Vos WM, Oost van der J: The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus is a unique glycolytic enzyme that belongs to the cupin superfamily. J Biol Chem. 2001, 276: 40926-40932. 10.1074/jbc.M104603200.

Hansen T, Oehlmann M, Schönheit P: Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2001, 183: 3428-3435. 10.1128/JB.183.11.3428-3435.2001.

van Nimwegen E: Scaling laws in the functional content of genomes. Trends Genet. 2003, 19: 479-484. 10.1016/S0168-9525(03)00203-8.

Molina N, van Nimwegen E: Scaling laws in functional genome content across prokaryotic clades and lifestyles. Trends Genet. 2009, 25: 243-247. 10.1016/j.tig.2009.04.004.

Galperin MY, Koonin EV: 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res. 2004, 32: 5452-5463. 10.1093/nar/gkh885.

Jensen RA: Evolution of metabolic pathways in enteric bacteria. Escherichia coli and Salmonella: cellular and molecular biology. Edited by: Neidhardt FC, Curtiss III R, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. 1996, Washington, D.C.: ASM Press, 2649-2662.

Jacob F: Evolution and tinkering. Science. 1977, 196: 1161-1166. 10.1126/science.860134.

Pal C, Papp B, Lercher MJ: Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet. 2005, 37: 1372-1375. 10.1038/ng1686.

Koonin EV, Wolf YI: Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008, 36: 6688-6719. 10.1093/nar/gkn668.

Dixon M, Webb EC: Enzymes. 1958, London, New York: Longmans, Green & Co. and Academic Press

Report of the Commission on Enzymes of the International Union of Biochemistry. 1961, Oxford: Pergamon Press

Enzyme Nomenclature 1992: Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions they Catalyse. 1992, San Diego, California: Academic Press

Yamanishi Y, Vert JP, Kanehisa M: Supervised enzyme network inference from the integration of genomic data and chemical information. Bioinformatics. 2005, 21 (Suppl 1): i468-i477. 10.1093/bioinformatics/bti1012.

Karp PD: Call for an enzyme genomics initiative. Genome Biol. 2004, 5: 401-10.1186/gb-2004-5-8-401.

Barrett AJ, Rawlings ND: 'Species' of peptidases. Biol Chem. 2007, 388: 1151-1157. 10.1515/BC.2007.151.

Rawlings ND, Barrett AJ, Bateman A: MEROPS: the peptidase database. Nucleic Acids Res. 2010, 38: D227-D233. 10.1093/nar/gkp971.

Galperin MY, Moroz OV, Wilson KS, Murzin AG: House cleaning, a part of good housekeeping. Mol Microbiol. 2006, 59: 5-19. 10.1111/j.1365-2958.2005.04950.x.

Kuznetsova E, Proudfoot M, Sanders SA, Reinking J, Savchenko A, Arrowsmith CH, Edwards AM, Yakunin AF: Enzyme genomics: Application of general enzymatic screens to discover new enzymes. FEMS Microbiol Rev. 2005, 29: 263-279. 10.1016/j.femsre.2004.12.006.

Bairoch A: The ENZYME database in 2000. Nucleic Acids Res. 2000, 28: 304-305. 10.1093/nar/28.1.304.

ENZYME database. [ftp://ftp.expasy.org/databases/enzyme]

Sayers EW, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M, Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Madden TL, Maglott DR, Miller V, Mizrachi I, Ostell J, Pruitt KD, Schuler GD, Sequeira E, Sherry ST, Shumway M, Sirotkin K, Souvorov A, Starchenko G, Tatusova TA, Wagner L, Yaschenko E, Ye J: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2009, 37: D5-D15. 10.1093/nar/gkn741.

Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.

The UniProt Consortium: The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res. 2009, 37: D169-D174. 10.1093/nar/gkn664.

Cuff AL, Sillitoe I, Lewis T, Redfern OC, Garratt R, Thornton J, Orengo CA: The CATH classification revisited--architectures reviewed and new ways to characterize structural divergence in superfamilies. Nucleic Acids Res. 2009, 37: D310-D314. 10.1093/nar/gkn877.

Wilson D, Pethica R, Zhou Y, Talbot C, Vogel C, Madera M, Chothia C, Gough J: SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res. 2009, 37: D380-D386. 10.1093/nar/gkn762.

Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr. 2004, 60: 2256-2268. 10.1107/S0907444904026460.

Jobb G, von Haeseler A, Strimmer K: TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics. BMC Evol Biol. 2004, 4: 18-10.1186/1471-2148-4-18.

Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001, 18: 691-699.

Pinchuk GE, Rodionov DA, Yang C, Li X, Osterman AL, Dervyn E, Geydebrekht OV, Reed SB, Romine MF, Collart FR, Scott JH, Fredrickson JK, Beliaev AS: Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc Natl Acad Sci USA. 2009, 106: 2874-2879. 10.1073/pnas.0806798106.

Sadreyev RI, Kim BH, Grishin NV: Discrete-continuous duality of protein structure space. Curr Opin Struct Biol. 2009, 19: 321-328. 10.1016/j.sbi.2009.04.009.

Alva V, Remmert M, Biegert A, Lupas AN, Söding J: A galaxy of folds. Protein Sci. 2010, 19: 124-130.

Zhang Y, Thiele I, Weekes D, Li Z, Jaroszewski L, Ginalski K, Deacon AM, Wooley J, Lesley SA, Wilson IA, Palsson B, Osterman A, Godzik A: Three-dimensional structural view of the central metabolic network of Thermotoga maritima. Science. 2009, 325: 1544-1549. 10.1126/science.1174671.

Jeffery CJ: Moonlighting proteins--an update. Mol BioSyst. 2009, 5: 345-350. 10.1039/b900658n.

Gancedo C, Flores CL: Moonlighting proteins in yeasts. Microbiol Mol Biol Rev. 2008, 72: 197-210. 10.1128/MMBR.00036-07.

Huberts DH, Klei van der IJ: Moonlighting proteins: An intriguing mode of multitasking. Biochim Biophys Acta. 2010, 1803: 520-5. 10.1016/j.bbamcr.2010.01.022.

Jeffery CJ: Moonlighting proteins. Trends Biochem Sci. 1999, 24: 8-11. 10.1016/S0968-0004(98)01335-8.

Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, deRiel JK, Sirover MA: A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci USA. 1991, 88: 8460-8464. 10.1073/pnas.88.19.8460.

Caradonna S, Ladner R, Hansbury M, Kosciuk M, Lynch F, Muller S: Affinity purification and comparative analysis of two distinct human uracil-DNA glycosylases. Exp Cell Res. 1996, 222: 345-359. 10.1006/excr.1996.0044.

Kirschner K, Bisswanger H: Multifunctional proteins. Annu Rev Biochem. 1976, 45: 143-166. 10.1146/annurev.bi.45.070176.001043.

Copley SD: Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol. 2003, 7: 265-272. 10.1016/S1367-5931(03)00032-2.

Diella F, Cameron S, Gemund C, Linding R, Via A, Kuster B, Sicheritz-Ponten T, Blom N, Gibson TJ: Phospho.ELM: a database of experimentally verified phosphorylation sites in eukaryotic proteins. BMC Bioinformatics. 2004, 5: 79-10.1186/1471-2105-5-79.

Gerlt JA, Babbitt PC, Rayment I: Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Arch Biochem Biophys. 2005, 433: 59-70. 10.1016/j.abb.2004.07.034.

Vick JE, Gerlt JA: Evolutionary potential of b/a8-barrels: stepwise evolution of a "new" reaction in the enolase superfamily. Biochemistry. 2007, 46: 14589-14597. 10.1021/bi7019063.

Holliday GL, Almonacid DE, Bartlett GJ, O'Boyle NM, Torrance JW, Murray-Rust P, Mitchell JB, Thornton JM: MACiE (Mechanism, Annotation and Classification in Enzymes): novel tools for searching catalytic mechanisms. Nucleic Acids Res. 2007, 35: D515-D520. 10.1093/nar/gkl774.

Andreini C, Bertini I, Cavallaro G, Holliday GL, Thornton JM: Metal-MACiE: a database of metals involved in biological catalysis. Bioinformatics. 2009, 25: 2088-2089. 10.1093/bioinformatics/btp256.

O'Boyle NM, Holliday GL, Almonacid DE, Mitchell JB: Using reaction mechanism to measure enzyme similarity. J Mol Biol. 2007, 368: 1484-1499. 10.1016/j.jmb.2007.02.065.

Paley SM, Karp PD: Evaluation of computational metabolic-pathway predictions for Helicobacter pylori. Bioinformatics. 2002, 18: 715-724. 10.1093/bioinformatics/18.5.715.

Chang A, Scheer M, Grote A, Schomburg I, Schomburg D: BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. Nucleic Acids Res. 2009, 37: D588-D592. 10.1093/nar/gkn820.