PET/CT không sử dụng FDG trong Ung thư Chẩn đoán: Một đánh giá qua hình ảnh
Tóm tắt
Chụp cắt lớp phát xạ positron/ chụp cắt lớp vi tính (PET/CT) hiện đang là một trong những phương pháp hình ảnh chính cho bệnh nhân ung thư trên toàn thế giới. Fluorodeoxyglucose (FDG) PET/CT đã được công nhận toàn cầu trong việc quản lý bệnh nhân ung thư hiện đại và đang nhanh chóng trở thành một phương pháp hình ảnh quan trọng cho bệnh nhân mắc các tình trạng về tim mạch, thần kinh và nhiễm trùng/viêm nhiễm.
Mặc dù đã được chứng minh có nhiều lợi ích, FDG vẫn có những hạn chế trong việc đánh giá một số khối u liên quan, chẳng hạn như ung thư tuyến tiền liệt. Do đó, đã có nhu cầu cấp thiết phát triển và ứng dụng lâm sàng của các dược phẩm phóng xạ PET khác nhau có thể hình ảnh hóa những loại khối u này một cách chính xác hơn. Do đó, một số dược phẩm phóng xạ PET không phải FDG đã được giới thiệu vào thực tiễn lâm sàng để quản lý bệnh ung thư. Xu hướng này chắc chắn sẽ tiếp tục mở rộng ra quốc tế. Việc sử dụng PET/CT với các dược phẩm phóng xạ PET khác nhau phù hợp với loại khối u và quá trình sinh học đang được đánh giá là một phần của phương pháp y học chính xác cá nhân hóa.
Mục tiêu của bài công bố này là cung cấp một phương pháp dựa trên trường hợp để hiểu biết về sự phân bố sinh học bình thường, các biến thể và cạm bẫy, bao gồm một số ví dụ về các hình ảnh khác nhau cho các chỉ định ung thư chính của từng dược phẩm phóng xạ PET không phải FDG mới. Điều này sẽ giúp dễ dàng hơn trong việc diễn giải và nhận biết các biến thể và cạm bẫy phổ biến nhằm đảm bảo rằng, trong thực tiễn lâm sàng, báo cáo chính thức là chính xác và hữu ích.
Một số dược phẩm phóng xạ này đã được cung cấp thương mại tại nhiều quốc gia (ví dụ: 68Ga-DOTATATE và DOTATOC), một số khác đang trong quá trình trở thành có sẵn (ví dụ: 68Ga-PSMA), và một số vẫn đang được nghiên cứu. Tuy nhiên, danh sách này có thể thay đổi khi một số dược phẩm phóng xạ ngày càng được sử dụng nhiều hơn, trong khi những loại khác giảm dần trong sử dụng.
Từ khóa
#PET/CT #FDG #dược phẩm phóng xạ #ung thư #chẩn đoán hình ảnhTài liệu tham khảo
Abe K, Hayashi K, Sasaki M, Koga H, Kaneko K, Sawamoto H et al (2006) O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) uptake in mouse thymoma cells, and its biodistribution in mice and human volunteers. Acta Radiol 47(10):1042–1048
Addeo P, Poncet G, Goichot B, Leclerc L, Brigand C, Mutter D et al (2018) The added diagnostic value of (18)F-Fluorodihydroxyphenylalanine PET/CT in the preoperative work-up of small bowel neuroendocrine tumors. J Gastrointest Surg 22(4):722–730
Afshar-Oromieh A, Hetzheim H, Kubler W, Kratochwil C, Giesel FL, Hope TA et al (2016) Radiation dosimetry of (68)Ga-PSMA-11 (HBED-CC) and preliminary evaluation of optimal imaging timing. Eur J Nucl Med Mol Imaging 43(9):1611–1620
Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM et al (2016) Response assessment in neuro-oncology working group and European association for neuro-oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology 18(9):1199–1208
Amodru V, Guerin C, Delcourt S, Romanet P, Loundou A, Viana B et al (2018) Quantitative (18)F-DOPA PET/CT in pheochromocytoma: the relationship between tumor secretion and its biochemical phenotype. Eur J Nucl Med Mol Imaging 45(2):278–282
Beheshti M, Mottaghy FM, Paycha F, Behrendt FFF, Van den Wyngaert T, Fogelman I et al (2015) (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 42(11):1767–1777
Bergeret S, Charbit J, Ansquer C, Bera G, Chanson P, Lussey-Lepoutre C (2019) Novel PET tracers: added value for endocrine disorders. Endocrine. 64(1):14–30
Bollineni VR, Kerner GS, Pruim J, Steenbakkers RJ, Wiegman EM, Koole MJ et al (2013) PET imaging of tumor hypoxia using 18F-fluoroazomycin arabinoside in stage III-IV non-small cell lung cancer patients. J Nucl Med 54(8):1175–1180
Bollineni VR, Koole MJ, Pruim J, Brouwer CL, Wiegman EM, Groen HJ et al (2014) Dynamics of tumor hypoxia assessed by 18F-FAZA PET/CT in head and neck and lung cancer patients during chemoradiation: possible implications for radiotherapy treatment planning strategies. Radiother Oncol 113(2):198–203
Bruine de Bruin L, Bollineni VR, Wachters JE, Schuuring E, van Hemel BM, van der Wal JE et al (2015) Assessment of hypoxic subvolumes in laryngeal cancer with (18)F-fluoroazomycinarabinoside ((18)F-FAZA)-PET/CT scanning and immunohistochemistry. Radiother Oncol 117(1):106–112
Calais J, Fendler WP, Eiber M, Gartmann J, Chu FI, Nickols NG et al (2018) Impact of (68)Ga-PSMA-11 PET/CT on the management of prostate cancer patients with biochemical recurrence. J Nucl Med 59(3):434–441
Chondrogiannis S, Marzola MC, Al-Nahhas A, Venkatanarayana TD, Mazza A, Opocher G et al (2013) Normal biodistribution pattern and physiologic variants of 18F-DOPA PET imaging. Nucl Med Commun 34(12):1141–1149
Davis J, Yano Y, Cahoon J, Budinger TF (1982) Preparation of 11C-methyl iodide and L-[S-methyl-11C]methionine by an automated continuous flow process. Int J Appl Radiat Isot 33(5):363–369
DeGrado TR, Coleman RE, Wang S, Baldwin SW, Orr MD, Robertson CN et al (2001) Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61(1):110–117
DeGrado TR, Reiman RE, Price DT, Wang S, Coleman RE (2002) Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43(1):92–96
Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M et al (1998) Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 25(6):629–633
Demirci E, Sahin OE, Ocak M, Akovali B, Nematyazar J, Kabasakal L (2016) Normal distribution pattern and physiological variants of 68Ga-PSMA-11 PET/CT imaging. Nucl Med Commun 37(11):1169–1179
Evangelista L, Guttilla A, Zattoni F, Muzzio PC, Zattoni F (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 63(6):1040–1048
Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S et al (2017) (68)Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 44(6):1014–1024
Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M et al (2006) [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 6:51
Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C et al (2015) The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology 17(9):1293–1300
Grierson JR, Shields AF (2000) Radiosynthesis of 3'-deoxy-3'-[(18)F]fluorothymidine: [(18)F]FLT for imaging of cellular proliferation in vivo. Nucl Med Biol 27(2):143–156
Hain SF, Maisey MN (2003) Positron emission tomography for urological tumours. BJU Int 92(2):159–164
Harris SM, Davis JC, Snyder SE, Butch ER, Vavere AL, Kocak M et al (2013) Evaluation of the biodistribution of 11C-methionine in children and young adults. J Nucl Med 54(11):1902–1908
Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T et al (2014) EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 65(2):467–479
Hirata K, Terasaka S, Shiga T, Hattori N, Magota K, Kobayashi H et al (2012) (1)(8)F-Fluoromisonidazole positron emission tomography may differentiate glioblastoma multiforme from less malignant gliomas. Eur J Nucl Med Mol Imaging 39(5):760–770
Ho CL, Yu SC, Yeung DW (2003) 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med 44(2):213–221
Institute NC. Investigator’s Brochure for [18F] fluoromisonidazole, 1H-1-(3-[18F]-fluoro-2-hydroxy-propyl)-2-nitro-imidazole, [18F]FMISO. An investigational positron emission tomography (PET) radiopharmaceutical for injection and intended for use as an in vivo diagnostic for imaging hypoxia in tumors. NIH;5th ed, 2013.
Karanikas G, Beheshti M (2014) (1)(1)C-acetate PET/CT imaging: physiologic uptake, variants, and pitfalls. PET Clin 9(3):339–344
Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34(9):1339–1347
Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W et al (2017) Targeted alpha-therapy of metastatic castration-resistant prostate cancer with (225)Ac-PSMA-617: dosimetry estimate and empiric dose finding. J Nucl Med 58(10):1624–1631
Kroiss A, Putzer D, Decristoforo C, Uprimny C, Warwitz B, Nilica B et al (2013) 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging 40(4):514–523
Kryza D, Tadino V, Filannino MA, Villeret G, Lemoucheux L (2008) Fully automated [18F]fluorocholine synthesis in the TracerLab MX FDG Coincidence synthesizer. Nucl Med Biol 35(2):255–260
Kunz M, Thon N, Eigenbrod S, Hartmann C, Egensperger R, Herms J et al (2011) Hot spots in dynamic (18)FET-PET delineate malignant tumor parts within suspected WHO grade II gliomas. Neuro-Oncology 13(3):307–316
Liao GJ, Clark AS, Schubert EK, Mankoff DA (2016) 18F-Fluoroestradiol PET: current status and potential future clinical applications. J Nucl Med 57(8):1269–1275
Lin Z, Mechalakos J, Nehmeh S, Schoder H, Lee N, Humm J et al (2008) The influence of changes in tumor hypoxia on dose-painting treatment plans based on 18F-FMISO positron emission tomography. Int J Radiat Oncol Biol Phys 70(4):1219–1228
Linden HM, Kurland BF, Peterson LM, Schubert EK, Gralow JR, Specht JM et al (2011) Fluoroestradiol positron emission tomography reveals differences in pharmacodynamics of aromatase inhibitors, tamoxifen, and fulvestrant in patients with metastatic breast cancer. Clin Cancer Res 17(14):4799–4805
Liu RS, Chang CP, Chu LS, Chu YK, Hsieh HJ, Chang CW et al (2006) PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging 33(4):420–427
Löfgren J, Mortensen J, Rasmussen SH, Madsen C, Loft A, Hansen AE, Oturai P, Jensen KE, Mørk ML, Reichkendler M, Højgaard L, Fischer BM. A Prospective Study Comparing 99mTc-Hydroxyethylene-Diphosphonate Planar Bone Scintigraphy and Whole-Body SPECT/CT with 18F-Fluoride PET/CT and 18F-Fluoride PET/MRI for Diagnosing Bone Metastases. J Nucl Med. 2017;58(11):1778–85.
Lopci E, Grassi I, Chiti A, Nanni C, Cicoria G, Toschi L et al (2014) PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. Am J Nucl Med Mol Imaging 4(4):365–384
Maurer T, Gschwend JE, Rauscher I, Souvatzoglou M, Haller B, Weirich G et al (2016) Diagnostic efficacy of (68)Gallium-PSMA positron emission tomography compared to conventional imaging for lymph node sStaging of 130 consecutive patients with intermediate to high risk prostate cancer. J Urol 195(5):1436–1443
Mitterhauser M, Wadsak W, Krcal A, Schmaljohann J, Eidherr H, Schmid A et al (2005) New aspects on the preparation of [11C]Methionine--a simple and fast online approach without preparative HPLC. Appl Radiat Isot 62(3):441–445
Mottet N, Bellmunt J, Bolla M, Joniau S, Mason M, Matveev V et al (2011) EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer. Eur Urol 59(4):572–583
Neels OC, Jager PL, Koopmans KP, Eriks E, de Vries EG, Kema IP et al (2006) Development of a reliable remote-controlled synthesis of β-[11C]-5-hydroxy-L-tryptophan on a Zymark robotic system. J Lab Compounds Radiopharmaceuticals 49(10):889–895
Nehmeh SA, Lee NY, Schroder H, Squire O, Zanzonico PB, Erdi YE et al (2008) Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys 70(1):235–242
Oh SJ, Mosdzianowski C, Chi DY, Kim JY, Kang SH, Ryu JS et al (2004) Fully automated synthesis system of 3'-deoxy-3'-[18F]fluorothymidine. Nucl Med Biol 31(6):803–809
Orlefors H, Sundin A, Garske U, Juhlin C, Oberg K, Skogseid B et al (2005) Whole-body 11C-5-hydroxytryptophan positron emission tomography as a universal imaging technique for neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and computed tomography. J Clin Endocrinol Metab 90(6):3392–3400
Park JW, Kim JH, Kim SK, Kang KW, Park KW, Choi JI et al (2008) A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 49(12):1912–1921
Peterson LM, Kurland BF, Link JM, Schubert EK, Stekhova S, Linden HM et al (2011) Factors influencing the uptake of 18F-fluoroestradiol in patients with estrogen receptor positive breast cancer. Nucl Med Biol 38(7):969–978
Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V et al (2012) Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. Eur J Nucl Med Mol Imaging 39(1):57–71
Poulsen SH, Urup T, Grunnet K, Christensen IJ, Larsen VA, Jensen ML et al (2017) The prognostic value of FET PET at radiotherapy planning in newly diagnosed glioblastoma. Eur J Nucl Med Mol Imaging 44(3):373–381
Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schafers M, Essler M et al (2017) German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med 58(1):85–90
Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D et al (2007) Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA--first small animal PET results. J Pharm Pharm Sci 10(2):203–211
Sandblom G, Sorensen J, Lundin N, Haggman M, Malmstrom PU (2006) Positron emission tomography with C11-acetate for tumor detection and localization in patients with prostate-specific antigen relapse after radical prostatectomy. Urology. 67(5):996–1000
Schneider B, Zhu H, Ma X, Cheng Z, Iagaru A, Kopka K et al (2016) Preparation and chemical analysis of clinical-grade 68Ga-PSMA-HBED-CC, an emerging tracer for imaging of prostate cancers. J Nucl Med 57(supplement 2):1117
Seltzer MA, Jahan SA, Sparks R, Stout DB, Satyamurthy N, Dahlbom M et al (2004) Radiation dose estimates in humans for (11)C-acetate whole-body PET. J Nucl Med 45(7):1233–1236
Shankar LK (2012) The clinical evaluation of novel imaging methods for cancer management. Nat Rev Clin Oncol 9(12):738–744
Singh S, Poon R, Wong R, Metser U (2018) 68Ga PET imaging in patients with neuroendocrine tumors: a systematic review and meta-analysis. Clin Nucl Med 43(11):802–810
Skoura E, Michopoulou S, Mohmaduvesh M, Panagiotidis E, Al Harbi M, Toumpanakis C et al (2016) The impact of 68Ga-DOTATATE PET/CT imaging on management of patients with neuroendocrine tumors: experience from a national referral center in the United Kingdom. J Nucl Med 57(1):34–40
Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot JN et al (2012) Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nucl Med Commun 33(7):775–779
Sundin A (2018) Novel functional imaging of neuroendocrine tumors. Endocrinol Metab Clin N Am 47(3):505–523
Turcotte E, Wiens LW, Grierson JR, Peterson LM, Wener MH, Vesselle H (2007) Toxicology evaluation of radiotracer doses of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) for human PET imaging: laboratory analysis of serial blood samples and comparison to previously investigated therapeutic FLT doses. BMC Nucl Med 7:3
Unterrainer M, Schweisthal F, Suchorska B, Wenter V, Schmid-Tannwald C, Fendler WP et al (2016) Serial 18F-FET PET imaging of primarily 18F-FET-negative glioma: does it make sense? J Nucl Med 57(8):1177–1182
van Kruchten M, de Vries EGE, Brown M, de Vries EFJ, Glaudemans A, Dierckx R et al (2013a) PET imaging of oestrogen receptors in patients with breast cancer. Lancet Oncol 14(11):e465–ee75
van Kruchten M, Glaudemans AW, de Vries EF, Beets-Tan RG, Schroder CP, Dierckx RA et al (2012) PET imaging of estrogen receptors as a diagnostic tool for breast cancer patients presenting with a clinical dilemma. J Nucl Med 53(2):182–190
van Kruchten M, Hospers GA, Glaudemans AW, Hollema H, Arts HJ, Reyners AK (2013b) Positron emission tomography imaging of oestrogen receptor-expression in endometrial stromal sarcoma supports oestrogen receptor-targeted therapy: case report and review of the literature. Eur J Cancer 49(18):3850–3855
Venema CM, Apollonio G, Hospers GA, Schroder CP, Dierckx RA, de Vries EF et al (2016) Recommendations and technical aspects of 16alpha-[18F]Fluoro-17beta-estradiol PET to image the estrogen receptor in vivo: the Groningen experience. Clin Nucl Med 41(11):844–851
Vesselle H, Grierson J, Peterson LM, Muzi M, Mankoff DA, Krohn KA (2003) 18F-Fluorothymidine radiation dosimetry in human PET imaging studies. J Nucl Med 44(9):1482–1488
Visser AK, Ramakrishnan NK, Willemsen AT, Di Gialleonardo V, de Vries EF, Kema IP et al (2014) [(11)C]5-HTP and microPET are not suitable for pharmacodynamic studies in the rodent brain. J Cereb Blood Flow Metab 34(1):118–125
Wack LJ, Monnich D, van Elmpt W, Zegers CM, Troost EG, Zips D et al (2015) Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia--a simulation study. Acta Oncol 54(9):1370–1377
Waseem N, Aparici CM, Kunz PL (2019) Evaluating the role of theranostics in grade 3 neuroendocrine neoplasms. J Nucl Med 60(7):882–891
Zamboglou C, Wieser G, Hennies S, Rempel I, Kirste S, Soschynski M et al (2016) MRI versus (6)(8)Ga-PSMA PET/CT for gross tumour volume delineation in radiation treatment planning of primary prostate cancer. Eur J Nucl Med Mol Imaging 43(5):889–897