Nomogram-based parameters to predict overall survival in a real-world advanced cancer population undergoing palliative care

BMC Palliative Care - Tập 18 - Trang 1-8 - 2019
Weiwei Zhao1,2, Zhiyong He2,3, Yintao Li4, Huixun Jia2, Menglei Chen1,2, Xiaoli Gu1,2, Minghui Liu1,2, Zhe Zhang1,2, Zhenyu Wu5, Wenwu Cheng1,2
1Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai, China
2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
3Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
4Department of Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, China
5Department of Biostatistics, School of Public Health, Key Laboratory of Public Health Safety and Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China

Tóm tắt

Although palliative care has been accepted throughout the cancer trajectory, accurate survival prediction for advanced cancer patients is still a challenge. The aim of this study is to identify pre-palliative care predictors and develop a prognostic nomogram for overall survival (OS) in mixed advanced cancer patients. A total of 378 consecutive advanced cancer patients were retrospectively recruited from July 2013 to October 2015 in one palliative care unit in China. Twenty-three clinical and laboratory characters were collected for analysis. Prognostic factors were identified to construct a nomogram in a training cohort (n = 247) and validated in a testing cohort (n = 131) from the setting. The median survival time was 48.0 (95% CI: 38.1–57.9) days for the training cohort and 52.0 (95% CI: 34.6–69.3) days for the validation cohort. Among pre-palliative care factors, sex, age, tumor stage, Karnofsky performance status, neutrophil count, hemoglobin, lactate dehydrogenase, albumin, uric acid, and cystatin-C were identified as independent prognostic factors for OS. Based on the 10 factors, an easily obtained nomogram predicting 90-day probability of mortality was developed. The predictive nomogram had good discrimination and calibration, with a high C-index of 0.76 (95% CI: 0.73–0.80) in the development set. The strong discriminative ability was externally conformed in the validation cohort with a C-index of 0.75. A validated prognostic nomogram has been developed to quantify the risk of mortality for advanced cancer patients undergoing palliative care. This tool may be useful in optimizing therapeutic approaches and preparing for clinical courses individually.

Tài liệu tham khảo

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32. Chen WQ, Li H, Sun KX, Zheng RS, Zhang SW, Zeng HM, Zou XN, Gu XY, He J. Report of Cancer incidence and mortality in China, 2014. Zhonghua Zhong Liu Za Zhi. 2018;40(1):5–13. Ferrell BR, Temel JS, Temin S, Alesi ER, Balboni TA, Basch EM, Firn JI, Paice JA, Peppercorn JM, Phillips T, et al. Integration of palliative care into standard oncology care: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2017;35(1):96–112. Gaertner J, Siemens W, Meerpohl JJ, Antes G, Meffert C, Xander C, Stock S, Mueller D, Schwarzer G, Becker G. Effect of specialist palliative care services on quality of life in adults with advanced incurable illness in hospital, hospice, or community settings: systematic review and meta-analysis. BMJ. 2017;357:j2925. Glare P, Sinclair C, Downing M, Stone P, Maltoni M, Vigano A. Predicting survival in patients with advanced disease. Eur J Cancer. 2008;44(8):1146–56. Gwilliam B, Keeley V, Todd C, Gittins M, Roberts C, Kelly L, Barclay S, Stone PC. Development of prognosis in palliative care study (PiPS) predictor models to improve prognostication in advanced cancer: prospective cohort study. BMJ Support Palliat Care. 2015;5(4):390–8. Feliu J, Jimenez-Gordo AM, Madero R, Rodriguez-Aizcorbe JR, Espinosa E, Castro J, Acedo JD, Martinez B, Alonso-Babarro A, Molina R, et al. Development and validation of a prognostic nomogram for terminally ill cancer patients. J Natl Cancer Inst. 2011;103(21):1613–20. Amano K, Maeda I, Shimoyama S, Shinjo T, Shirayama H, Yamada T, Ono S, Yamamoto R, Yamamoto N, Shishido H, et al. The accuracy of Physicians' clinical predictions of survival in patients with advanced Cancer. J Pain Symptom Manag. 2015;50(2):139–46. Hui D. Prognostication of survival in patients with advanced Cancer: predicting the unpredictable? Cancer Control. 2015;22(4):489–97. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–70. Madsen LT. Cancer prediction Nomograms for advanced practitioners in oncology. J Adv Pract Oncol. 2014;5(5):380–2. Kondrup J, Allison SP, Elia M, Vellas B, Plauth M. ESPEN guidelines for nutrition screening 2002. Clin Nutr. 2003;22(4):415–21. Harrell FJ, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361–87. Hirabayashi S, Kosugi S, Isobe Y, Nashimoto A, Oda I, Hayashi K, Miyashiro I, Tsujitani S, Kodera Y, Seto Y, et al. Development and external validation of a nomogram for overall survival after curative resection in serosa-negative, locally advanced gastric cancer. Ann Oncol. 2014;25(6):1179–84. Pan JJ, Ng WT, Zong JF, Lee SW, Choi HC, Chan LL, Lin SJ, Guo QJ, Sze HC, Chen YB, et al. Prognostic nomogram for refining the prognostication of the proposed 8th edition of the AJCC/UICC staging system for nasopharyngeal cancer in the era of intensity-modulated radiotherapy. Cancer. 2016;122(21):3307–15. Simmons C, McMillan DC, McWilliams K, Sande TA, Fearon KC, Tuck S, Fallon MT, Laird BJ. Prognostic tools in patients with advanced Cancer: a systematic review. J Pain Symptom Manag. 2017;53(5):962–70. Huang Y, Liu Z, He L, Chen X, Pan D, Ma Z, Liang C, Tian J, Liang C. Radiomics signature: a potential biomarker for the prediction of disease-free survival in early-stage (I or II) non-small cell lung Cancer. Radiology. 2016;281(3):947–57. Arrieta O, Angulo LP, Nunez-Valencia C, Dorantes-Gallareta Y, Macedo EO, Martinez-Lopez D, Alvarado S, Corona-Cruz JF, Onate-Ocana LF. Association of depression and anxiety on quality of life, treatment adherence, and prognosis in patients with advanced non-small cell lung cancer. Ann Surg Oncol. 2013;20(6):1941–8. Salvo N, Zeng L, Zhang L, Leung M, Khan L, Presutti R, Nguyen J, Holden L, Culleton S, Chow E. Frequency of reporting and predictive factors for anxiety and depression in patients with advanced cancer. Clin Oncol (R Coll Radiol). 2012;24(2):139–48. Xiao G, Cao Y, Qiu X, Wang W, Wang Y. Influence of gender and age on the survival of patients with nasopharyngeal carcinoma. BMC Cancer. 2013;13:226. Trufelli DC, Moraes TV, Lima AA, Giglio AD. Epidemiological profile and prognostic factors in patients with lung cancer. Rev Assoc Med Bras. 2016;62(5):428–33. Goorts B, van Nijnatten TJ, de Munck L, Moossdorff M, Heuts EM, de Boer M, Lobbes MB, Smidt ML. Clinical tumor stage is the most important predictor of pathological complete response rate after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res Treat. 2017;163(1):83–91. Evers PD, Logan JE, Sills V, Chin AI. Karnofsky performance status predicts overall survival, cancer-specific survival, and progression-free survival following radical cystectomy for urothelial carcinoma. World J Urol. 2014;32(2):385–91. Bowden J, Williams LJ, Simms A, Price A, Campbell S, Fallon MT, Fearon K. Prediction of 90 day and overall survival after Chemoradiotherapy for lung Cancer: role of performance status and body composition. Clin Oncol. 2017;29(9):576–84. Yu SL, Xu LT, Qi Q, Geng YW, Chen H, Meng ZQ, Wang P, Chen Z. Serum lactate dehydrogenase predicts prognosis and correlates with systemic inflammatory response in patients with advanced pancreatic cancer after gemcitabine-based chemotherapy. Sci Rep. 2017;7:45194. Zavrsnik J, Butinar M, Prebanda MT, Krajnc A, Vidmar R, Fonovic M, Grubb A, Turk V, Turk B, Vasiljeva O. Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells. Oncotarget. 2017;8(43):73793–809. Wang Y, Fang T, Huang L, Wang H, Zhang L, Wang Z, Cui Y. Neutrophils infiltrating pancreatic ductal adenocarcinoma indicate higher malignancy and worse prognosis. Biochem Biophys Res Commun. 2018;501(1):313–9. Yue CF, Feng PN, Yao ZR, Yu XG, Lin WB, Qian YM, Guo YM, Li LS, Liu M. High serum uric acid concentration predicts poor survival in patients with breast cancer. Clin Chim Acta. 2017;473:160–5. Zhao W, Wang P, Jia H, Chen M, Gu X, Liu M, Zhang Z, Cheng W, Wu Z. Neutrophil count and percentage: potential independent prognostic indicators for advanced cancer patients in a palliative care setting. Oncotarget. 2017;8(38):64499–508. Wang S, Liu X, He Z, Chen X, Li W. Hyperuricemia has an adverse impact on the prognosis of patients with osteosarcoma. Tumour Biol. 2016;37(1):1205–10. Hsieh AH, Tahkar H, Koczwara B, Kichenadasse G, Beckmann K, Karapetis C, Sukumaran S. Pre-treatment serum lactate dehydrogenase as a biomarker in small cell lung cancer. Asia Pac J Clin Oncol. 2018;14(2):e64–70. Yan Y, Zhou K, Wang L, Wang F, Chen X, Fan Q. Clinical significance of serum cathepsin B and cystatin C levels and their ratio in the prognosis of patients with esophageal cancer. Onco Targets Ther. 2017;10:1947–54. Jiang HH, Li AJ, Tang EJ, Dan X, Chen Y, Zhang Y, Tang M, Xiao YH, Deng XX, Li HG, et al. Prognostic value of the combination of preoperative hemoglobin, lymphocyte, albumin, and neutrophil in patients with locally advanced colorectal Cancer. Med Sci Monit. 2016;22:4986–91. Aggerholm-Pedersen N, Maretty-Kongstad K, Keller J, Baerentzen S, Safwat A. The prognostic value of serum biomarkers in localized bone sarcoma. Transl Oncol. 2016;9(4):322–8. Sun H, He B, Nie Z, Pan Y, Lin K, Peng H, Xu T, Chen X, Hu X, Wu Z, et al. A nomogram based on serum bilirubin and albumin levels predicts survival in gastric cancer patients. Oncotarget. 2017;8(25):41305–18. Lau F, Downing M, Lesperance M, Karlson N, Kuziemsky C, Yang J. Using the palliative performance scale to provide meaningful survival estimates. J Pain Symptom Manag. 2009;38(1):134–44. Hui D, Kilgore K, Fellman B, Urbauer D, Hall S, Fajardo J, Rhondali W, Kang JH, Del FE, Zhukovsky D, et al. Development and cross-validation of the in-hospital mortality prediction in advanced cancer patients score: a preliminary study. J Palliat Med. 2012;15(8):902–9.