Noisy: Identification of problematic columns in multiple sequence alignments
Tóm tắt
Sequence-based methods for phylogenetic reconstruction from (nucleic acid) sequence data are notoriously plagued by two effects: homoplasies and alignment errors. Large evolutionary distances imply a large number of homoplastic sites. As most protein-coding genes show dramatic variations in substitution rates that are not uncorrelated across the sequence, this often leads to a patchwork pattern of (i) phylogenetically informative and (ii) effectively randomized regions. In highly variable regions, furthermore, alignment errors accumulate resulting in sometimes misleading signals in phylogenetic reconstruction. We present here a method that, based on assessing the distribution of character states along a cyclic ordering of the taxa, allows the identification of phylogenetically uninformative homoplastic sites in a multiple sequence alignment. Removal of these sites appears to improve the performance of phylogenetic reconstruction algorithms as measured by various indices of "tree quality". In particular, we obtain more stable trees due to the exclusion of phylogenetically incompatible sites that most likely represent strongly randomized characters. The computer program noisy implements this approach. It can be employed to improving phylogenetic reconstruction capability with quite a considerable success rate whenever (1) the average bootstrap support obtained from the original alignment is low, and (2) there are sufficiently many taxa in the data set – at least, say, 12 to 15 taxa. The software can be obtained under the GNU Public License from
http://www.bioinf.uni-leipzig.de/Software/noisy/
.
Tài liệu tham khảo
Ogden TH, Rosenberg M: Multiple Sequence Alignment Accuracy and Phylogenetic Inference. Syst Biol. 2006, 55: 314-328. 10.1080/10635150500541730
Landan G, Graur D: Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol. 2007, 24: 1380-1383. 10.1093/molbev/msm060
Björklund M: Are Third Positions Really That Bad? A Test Using Vertebrate Cytochrome b. Cladistics. 1999, 15: 91-97.
Yang Z: On the best evolutionary rate for phylogenetic analysis. Syst Biol. 1998, 47: 125-133. 10.1080/106351598261067
Wägele JW: Foundations of Phylogenetic Systematics. 2005, Munich, Germany: Verlag Dr Friedrich Pfeil
Le Quesne WJ: A method of selection of characters in numerical taxonomy. Syst Zool. 1969, 18: 201-205. 10.2307/2412604.
Wilkinson M: Consensus compatibility and missing data in phylogenetic inference. PhD thesis. 1992, University of Bristol, UK
Meachem CA: Phylogenetic relationships at the basal radiation of angiosperms: further study by probability of character compatibility. Syst Bot. 1994, 19: 506-522. 10.2307/2419774.
Pisani D: Identifying and removing fast-evolving sites using compatibility analysis: an example from the arthropoda. Syst Biol. 2004, 53: 978-989. 10.1080/10635150490888877
Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994, 39: 306-314. 10.1007/BF00160154
Hansmann S, Martin W: Phylogeny of 33 ribosomal and six other proteins encoded in an ancient gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites from analysis. Int J Syst Evol Microbiol. 2000, 50: 1655-1663.
Brinkmann H, Philippe H: Archaea sister group of Bacteria? Indications from tree reconstruction artifacts in ancient phylogenies. Mol Biol Evol. 1999, 16: 817-825.
Bandelt HJ, Dress AWM: A Canonical Decomposition Theory for Metrics on a Finite Set. Adv Math. 1992, 92: 47-105. 10.1016/0001-8708(92)90061-O.
Huson DH: SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998, 14: 68-73. 10.1093/bioinformatics/14.1.68
Semple C, Steel M: Cyclic permutations and evolutionary trees. Adv Appl Math. 2004, 32: 669-680. 10.1016/S0196-8858(03)00098-8.
Buneman P: The Recovery of Trees from Measures of Dissimilarity. Mathematics and the Archeological and Historical Sciences. Edited by: Hodson FR, Kendall DG, Tautu P. 1971, 387-395. Edinburgh, UK: Edinburgh University Press
Bandelt HJ, Dress AWM: Split Decomposition: A New and Useful Approach to Phylogenetic Analysis of Distance Data. Mol Phylogenet Evol. 1992, 1 (3): 242-252. 10.1016/1055-7903(92)90021-8
Wetzel R: Zur Visualisierung abstrakter Ähnlichkeitsbeziehungen. PhD thesis. 1995, Bielefeld University, Germany
Bryant D, Moulton V: Neighbor-Net: An Agglomerative Method for the Construction of Phylogenetic Networks. Mol Biol Evol. 2004, 21: 255-265. 10.1093/molbev/msh018
Nieselt-Struwe K, von Haeseler A: Quartet-Mapping, a generalization of the likelihood mapping procedure. Mol Biol Evol. 2001, 18: 1204-1219.
Grünewald S, Forslund K, Dress AWM, Moulton V: QNet: an agglomerative method for the construction of phylogenetic networks from weighted quartets. Mol Biol Evol. 2007, 24: 532-538. 10.1093/molbev/msl180
Bryant D, Moulton V: Consistency of Neighbor-Net. Alg Mol Biol. 2007, 2: 8-10.1186/1748-7188-2-8.
Grünewald S, Moulton V, Spillner A: Consistency of the QNet algorithm for generating planar split networks from weighted quartets. Disc Appl Math. 2007,to appear
Matsumoto M: Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans Modeling Comp Simulation. 1998, 8: 3-30. 10.1145/272991.272995.
Stockley B, Smith AB, Littlewood T, Lessios HA, Mackenzie-Dodds JA: Phylogenetic relationships of spatangoid sea urchins (Echinoidea): taxon sampling density and congruence between morphological and molecular estimates. Zool Scripta. 2005, 34: 447-468. 10.1111/j.1463-6409.2005.00201.x.
Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods) Version 4.0b10. 2002, [Handbook and Software], Sunderland, MA: Sinauer Associates
Kluge AG, Farris JS: Quantitative phyletics and the evolution of anurans. Syst Zool. 1969, 18: 1-32. 10.2307/2412407.
Farris JS: The retention index and the rescaled consistency index. Cladistics. 1989, 5: 417-419.
Mailund T: SplitDist – Calculating Split-Distances for Sets of Trees. Tech. rep., BiRC, Univ. Aarhus, Århus, DK. 2006, http://www.daimi.au.dk/~mailund/split-dist.html
Electronic Supplement. http://www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/06-013/
Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene Sequences and a Compilation of Conserved Polymerase Chain Reaction Primers. Ann Entomol Soc Am. 1994, 87: 651-701.
Hillis DM, Huelsenbeck JP: Signal, Noise, and Reliability in Molecular Phylogenetic Analysis. J Hered. 1992, 83 (3): 189-195.
Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987, 4: 406-425.
Felsenstein J: Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985, 31: 783-791. 10.2307/2408678.
Efron B, Halloran E, Holmes S: Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci USA. 1996, 93: 7085-7090. 10.1073/pnas.93.14.7085
Cartwright R: DNA Assembly With Gaps (Dawg): Simulating Sequence Evolution. Bioinformatics. 2005, 21 (Suppl 3): iii31-iii38. 10.1093/bioinformatics/bti1200
Korte A, Ribera I, Beutel RG, Bernhard D: Interrelationships of Staphyliniform groups inferred from 18S and 28S rDNA sequences, with special emphasis on Hydrophiloidea (Coleoptera, Staphyliniformia). J Zool Syst Evol Research. 2004, 42: 281-288. 10.1111/j.1439-0469.2004.00282.x.