Noise suppression in inverse weak value-based phase detection

Quantum Studies: Mathematics and Foundations - Tập 5 - Trang 579-588 - 2017
Kevin Lyons1, John C. Howell2,1,3, Andrew N. Jordan2,1,3
1Center for Coherence and Quantum Optics, University of Rochester, Rochester, USA
2Department of Physics and Astronomy, University of Rochester, Rochester, USA
3Institute for Quantum Studies, Chapman University, Orange, USA

Tóm tắt

We examine the effect of different sources of technical noise on inverse weak value-based precision phase measurements. We find that this type of measurement is similarly robust to technical noise as related experiments in the weak value regime. In particular, the measurements considered here are robust to additive Gaussian white noise and angular jitter noise commonly encountered in optical experiments. Additionally, we show the same techniques used for precision phase measurement can be used with the same technical advantages for optical frequency measurements.

Tài liệu tham khảo

Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. Am. Phys. Soc. 60, 1351 (1988). https://doi.org/10.1103/PhysRevLett.60.1351 Hosten, O., Kwiat, P.: Observation of the spin hall effect of light via weak measurements. Science 319, 787 (2008) Dixon, P.B., Starling, D.J., Jordan, A.N., Howell, J.C.: Ultrasensitive beam deflection measurement via interferometric weak value amplification. Phys. Rev. Lett. 102, 173601 (2009) Starling, D.J., Dixon, P.B., Jordan, A.N., Howell, J.C.: Optimizing the signal-to-noise ratio of a beam-deflection measurement with interferometric weak values. Phys. Rev. A 80, 041803 (2009) Starling, D.J., Dixon, P.B., Jordan, A.N., Howell, J.C.: Precision frequency measurements with interferometric weak values. Phys. Rev. A 82, 063822 (2010) Starling, D.J., Dixon, P.B., Williams, N.S., Jordan, A.N., Howell, J.C.: Continuous phase amplification with a Sagnac interferometer. Phys. Rev. A 82, 011802(R) (2010) Howell, J.C., Starling, D.J., Dixon, P.B., Vudyasetu, P.K., Jordan, A.N.: Interferometric weak value deflections: quantum and classical treatments. Phys. Rev. A 81, 033813 (2010) Hogan, J.M., Hammer, J., Chiow, S.-W., Dickerson, S., Johnson, D.M.S., Kovachy, T., Sugarbaker, A., Kasevich, M.A.: Precision angle sensor using an optical lever inside a Sagnac interferometer. Opt. Lett. 36, 1698 (2011). https://doi.org/10.1364/OL.36.001698 Pfeifer, M., Fischer, P.: Instrumentation, measurement, and metrology; Refraction; Birefringence; Chiral media. Opt. Express 19, 16508 (2011). https://doi.org/10.1364/OE.19.016508 Egan, P., Stone, J.A.: Weak-value thermostat with 0.2 mK precision. Opt. Lett. 37, 4991 (2012). https://doi.org/10.1364/OL.37.004991 Gorodetski, Y., Bliokh, K.Y., Stein, B., Genet, C., Shitrit, N., Kleiner, V., Hasman, E., Ebbesen, T.W.: Weak measurements of light chirality with a plasmonic slit, experimental observation of the spin hall effect of light on a nanometal film via weak measurements. Phys. Rev. Lett 109, 013901 (2012). https://doi.org/10.1103/PhysRevLett.109.013901 Zhou, X., Xiao, Z., Luo, H., Wendoi, S.: Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements. Phys. Rev. A 85, 043809 (2012). https://doi.org/10.1103/PhysRevA.85.043809 Strübi, G., Bruder, C.: Measuring ultrasmall time delays of light by joint weak measurements. Phys. Rev. Lett. 110, 083605 (2013). https://doi.org/10.1103/PhysRevLett.110.083605 Viza, G.I., Martínez-Rincón, J., Howland, G.A., Frostig, H., Shomroni, I., Dayan, B., Howell, J.C.: Weak-values technique for velocity measurements. Opt. Lett. 38, 2949 (2013). https://doi.org/10.1364/OL.38.002949 Xu, X.-Y., Kedem, Y., Sun, K., Vaidman, L., Li, C.-F., Guo, G.-C.: Phase estimation with weak measurement using a white light source. Phys. Rev. Lett. 111, 033604 (2013). https://doi.org/10.1103/PhysRevLett.111.033604 Zhou, L., Turek, Y., Sun, C.P., Nori, F.: Weak-value amplification of light deflection by a dark atomic ensemble. Phys. Rev. A 88, 053815 (2013). https://doi.org/10.1103/PhysRevA.88.053815 Magaña Loaiza, O.S., Mirhosseini, M., Rodenburg, B., Boyd, R.W.: Amplification of angular rotations using weak measurements. Phys. Rev. Lett. 112, 200401 (2014). https://doi.org/10.1103/PhysRevLett.112.200401 Salazar-Serrano, L.J., Janner, D., Brunner, N., Pruneri, V., Torres, J.P.: Measurement of sub-pulse-width temporal delays via spectral interference induced by weak value amplification. Phys. Rev. A 89, 012126 (2014). https://doi.org/10.1103/PhysRevA.89.012126 Salazar-Serrano, L., Barrera, D., Amaya, W., Sales, S., Pruneri, V., Capmany, J., Torres, J.: Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification. Opt. Lett. 40, 3962 (2015) Martínez-Rincón, J., Mullarkey, C.A., Viza, G.I., Liu, W.-T., Howell, J.C.: Ultrasensitive inverse weak-value tilt meter. Opt. Lett. 42, 2479 (2017). https://doi.org/10.1364/OL.42.002479 Dressel, J., Malik, M., Miatto, F.M., Jordan, A.N., Boyd, R.W.: Colloquium: understanding quantum weak values: basics and applications. Rev. Mod. Phys. 86, 307 (2014). https://doi.org/10.1103/RevModPhys.86.307 Pang, S., Dressel, J., Brun, T.A.: Entanglement-assisted weak value amplification. Phys. Rev. Lett. 113, 030401 (2014). https://doi.org/10.1103/PhysRevLett.113.030401 Pang, S., Brun, T.A.: Improving the precision of weak measurements by postselection measurement. Phys. Rev. Lett. 115, 120401 (2015). https://doi.org/10.1103/PhysRevLett.115.120401 Jordan, A.N., Martínez-Rincón, J., Howell, J.C.: Technical advantages for weak-value amplification: when less is more. Phys. Rev. X 4, 011031 (2014). https://doi.org/10.1103/PhysRevX.4.011031 Knee, G.C., Gauger, E.M.: When amplification with weak values fails to suppress technical noise. Phys. Rev. X 4, 011032 (2014). https://doi.org/10.1103/PhysRevX.4.011032 Viza, G.I., Martínez-Rincón, J., Alves, G.B., Jordan, A.N., Howell, J.C.: Experimentally quantifying the advantages of weak-value-based metrology. Phys. Rev. A 92, 032127 (2015) Alves, G.B., Escher, B.M., de Matos Filho, R.L., Zagury, N., Davidovich, L.: Weak-value amplification as an optimal metrological protocol. Phys. Rev. A 91, 062107 (2015). https://doi.org/10.1103/PhysRevA.91.062107 Torres, J.P., Salazar-Serrano, L.J.: Weak value amplification: a view from quantum estimation theory that highlights what it is and what isn’t. Sci. Rep. 6, 19702 (2016) Harris, J., Boyd, R.W., Lundeen, J.S.: Weak value amplification can outperform conventional measurement in the presence of detector saturation (2016). arXiv preprint. arXiv:1612.04327 Pang, S., Alonso, J.R.G., Brun, T.A., Jordan, A.N.: Protecting weak measurements against systematic errors. Phys. Rev. A 94, 012329 (2016). https://doi.org/10.1103/PhysRevA.94.012329 Dressel, J., Lyons, K., Jordan, A.N., Graham, T.M., Kwiat, P.G.: Strengthening weak-value amplification with recycled photons. Phys. Rev. A 88, 023821 (2013) Lyons, K., Dressel, J., Jordan, A.N., Howell, J.C., Kwiat, P.G.: Power-recycled weak-value-based metrology. Phys. Rev. Lett. 114, 170801 (2015) Byard, C., Graham, T., Jordan, A., Kwiat, P.G.: Pulse recycling and weak value metrology. In: Frontiers in Optics 2015. Optical Society of America, Paper JW2A-69 (2015) Wang, Y.-T., Tang, J.-S., Hu, G., Wang, J., Yu, S., Zhou, Z.-Q., Cheng, Z.-D., Xu, J.-S., Fang, S.-Z., Wu, Q.-L., et al.: Experimental demonstration of higher precision weak-value-based metrology using power recycling. Phys. Rev. Lett. 117, 230801 (2016) Dressel, J., Lyons, K., Jordan, A.N., Graham, T., Kwiat, P.: Strengthening weak values with recycled photons. Phys. Rev. A 88, 023821 (2013) Lyons, K., Dressel, J., Jordan, A.N., Howell, J.C., Kwiat, P.G.: Power-recycled weak-value-based metrology. Phys. Rev. Lett. 114, 170801 (2015). https://doi.org/10.1103/PhysRevLett.114.170801 Kofman, A.G., Ashhab, S., Nori, F.: Nonperturbative theory of weak pre- and post-selected measurements. Phys. Rep. 520, 43 (2012). https://doi.org/10.1016/j.physrep.2012.07.001 Starling, D.J., Bloch, S.M., Vudyasetu, P.K., Choi, J.S., Little, B., Howell, J.C.: Double Lorentzian atomic prism. Phys. Rev. A 86, 023826 (2012). https://doi.org/10.1103/PhysRevA.86.023826 Boyd, R.W., Gauthier, D.J.: Slow and Fast Light. University of Rochester Institute of Optics, Technical Report (2001)