Nodal activity around Kupffer's vesicle depends on the T‐box transcription factors notail and spadetail and on notch signaling

Developmental Dynamics - Tập 236 Số 8 - Trang 2131-2146 - 2007
Françoise A. Gourronc1,2, Nadira Ahmad1,2, Nicholas Nedza1, Timothy Eggleston1, Michael Rebagliati1
1Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
2Francoise Gourronc and Nadira Ahmad contributed equally to this work.

Tóm tắt

Abstract

The node, or its zebrafish equivalent, Kupffers Vesicle (KV), is thought to generate laterality cues through cilia‐dependent signaling. An interaction between Nodal ligands and Nodal antagonists around the node/KV is also required. Here we investigate whether loss of Brachyury/Notail or Tbx16/Spadetail disrupts the balance of Nodal ligands (Southpaw) and antagonists (Charon) around Kupffers Vesicle. Reduction of Spadetail or Notail disrupts expression of southpaw in the perinodal domains flanking Kupffers Vesicle. Similar to what was published for Notail, we find Spadetail is also required for expression of charon. We present evidence for the model that Notail has a direct role in regulating the charon promoter. In particular, a flanking genomic region with putative Notail binding sites can drive KV expression of a reporter in a Notail‐dependent fashion. This region also contains motifs for CSL/RBP‐J/Su(H). Consistent with this, we find charon expression is strongly Notch‐dependent whereas perinodal southpaw expression is not. Developmental Dynamics 236:2131–2146, 2007. © 2007 Wiley‐Liss, Inc.

Từ khóa


Tài liệu tham khảo

10.1016/j.tcm.2003.11.001

10.1242/dev.129.14.3311

10.1016/j.cub.2004.04.002

10.1002/dvdy.10375

10.1242/dev.126.14.3253

Bisgrove BW, 2000, Multiple pathways in the midline regulate concordant brain, heart and gut left‐right asymmetry, Development, 127, 3567, 10.1242/dev.127.16.3567

10.1146/annurev.genom.4.070802.110428

10.1016/j.ydbio.2005.08.047

10.1038/nrm2009

10.1101/gad.1016202

10.1002/1096-8628(20010715)101:4<339::AID-AJMG1442>3.0.CO;2-P

Burdine RD, 2000, Conserved and divergent mechanisms in left‐right axis formation, Genes Dev, 14, 763, 10.1101/gad.14.7.763

Chen JN, 1997, Left‐right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish, Development, 124, 4373, 10.1242/dev.124.21.4373

10.1006/dbio.2000.9924

10.1038/381155a0

10.1242/dev.128.19.3749

10.1006/dbio.2001.0515

Essner JJ, 2000, Mesendoderm and left‐right brain, heart and gut development are differentially regulated by pitx2 isoforms, Development, 127, 1081, 10.1242/dev.127.5.1081

10.1242/dev.01663

10.1002/gene.1058

10.1126/science.1124070

10.1038/nrn1990

10.1093/embo-reports/kvf124

10.1073/pnas.1633548100

10.1016/S0092-8674(05)80087-X

10.1038/nrg732

10.1242/dev.01070

10.1016/j.semcdb.2004.10.004

10.1126/science.1085397

10.1101/gad.1001302

10.1046/j.1365-2443.2001.00481.x

10.1038/nature03512

10.1016/S0925-4773(98)00166-X

Kramer‐ZuckerA OlaleF HaycraftC YoderB SchierA DrummondI.2004.Moving cilia and fluid flow in the developing zebrafish embryo. In: The 6th International Conference on Zebrafish Development and Genetics. Madison Wisconsin. p39.

10.1242/dev.01772

10.1101/gad.1084703

10.1101/gr.209601

10.1002/bies.10339

10.1016/0092-8674(95)90477-8

10.1242/dev.00981

Long S, 2002, Sensitive two‐color whole‐mount in situ hybridizations using digoxygenin‐ and dinitrophenol‐labeled RNA probes, Biotechniques, 32, 494, 10.2144/02323bm04

10.1242/dev.00436

10.1038/381158a0

10.1242/dev.128.10.1831

10.1101/gad.306504

10.1073/pnas.96.9.5043

10.1016/S0092-8674(03)00511-7

Meinhardt H, 2001, Organizer and axes formation as a self‐organizing process, Int J Dev Biol, 45, 177

10.1002/1521-1878(200008)22:8<753::AID-BIES9>3.0.CO;2-Z

10.1242/dev.122.7.2225

10.1016/j.devcel.2005.03.001

10.1038/39929

10.1016/j.devcel.2006.08.002

10.1242/dev.02149

10.1038/79951

10.1006/dbio.1999.9324

10.1016/j.mod.2006.03.008

10.1016/S0092-8674(00)81705-5

10.1101/gad.13.12.1575

Norris DP, 2002, The Foxh1‐dependent autoregulatory enhancer controls the level of Nodal signals in the mouse embryo, Development, 129, 3455, 10.1242/dev.129.14.3455

10.1016/j.ydbio.2005.01.010

Odenthal J, 1996, Mutations affecting the formation of the notochord in the zebrafish, Danio rerio, Development, 123, 103, 10.1242/dev.123.1.103

10.1016/S1097-2765(00)80197-5

10.1074/jbc.M506108200

10.1016/j.mod.2004.05.005

10.1101/gad.1084403

10.1038/nature02190

10.1098/rstb.2003.1332

10.1101/gad.13.3.259

10.1016/S1097-2765(00)80401-3

10.1016/S0012-1606(02)00121-5

Sampath K, 1997, Functional differences among Xenopus nodal‐related genes in left‐right axis determination, Development, 124, 3293, 10.1242/dev.124.17.3293

10.1016/j.devcel.2005.05.002

10.1242/dev.116.4.1021

10.1242/dev.120.4.1009

10.1242/dev.02384

10.1016/S0925-4773(99)00231-2

Stemple DL, 1996, Mutations affecting development of the notochord in zebrafish, Development, 123, 117, 10.1242/dev.123.1.117

10.1046/j.1440-169x.2001.00556.x

10.1073/pnas.0608118104

10.1006/dbio.1996.0209

10.1016/j.mod.2004.06.002

10.1186/gb-2002-3-6-reviews3008

10.1101/gad.13.19.2527

10.1046/j.1365-2443.2000.00329.x

10.1093/hmg/ddi468