No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation

Methods in Ecology and Evolution - Tập 6 Số 10 - Trang 1126-1136 - 2015
Huijie Qiao1, Jorge Soberón2, A. Townsend Peterson2
1Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
2Biodiversity Institute, University of Kansas, 1345 Jayhawk Blvd, Lawrence, KS 66045, USA

Tóm tắt

SummaryThe field of ecological niche modelling or species distribution modelling has seen enormous activity and attention in recent years, in the light of exciting biological inferences that can be drawn from correlational models of species' environmental requirements (i.e. ecological niches) and inferences of potential geographic distributions. Among the many methods used in the field, one or two are in practice assumed to be ‘best’ and are used commonly, often without explicit testing.We explore herein implications of the ‘no free lunch’ theorem, which suggests that no single optimization approach will prove to be best under all circumstances: we developed diverse virtual species with known niche and dispersal properties to test a suite of niche modelling algorithms designed to estimate potential areas of distribution.The result was that (i) indeed, no single ‘best’ algorithm was found and (ii) different algorithms performing very different manners depending on the particularities of the virtual species.The conclusion is that niche or distribution modelling studies should begin by testing a suite of algorithms for predictive ability under the particular circumstances of the study and choose an algorithm for a particular challenge based on the results of those tests. Studies that do not take this step may use algorithms that are not optimal for that particular challenge.

Từ khóa


Tài liệu tham khảo

10.1111/j.1365-2664.2006.01214.x

10.1016/S0304-3800(02)00349-6

10.1016/j.tree.2006.09.010

10.1016/j.ecolmodel.2011.02.011

10.2307/1931333

Breiman L.(2001)Random Forests;http://oz.berkeley.edu/users/breiman/randomforest2001.pdf. Unpublished Technical Report.

10.1111/j.0906-7590.2004.03764.x

Brown J.H., 1998, Biogeography

10.1086/523949

10.1007/BF00051966

10.1016/j.ecolmodel.2013.07.006

10.1111/j.1095-8312.2008.01040.x

10.1111/j.2006.0906-7590.04596.x

10.1111/j.1600-0587.2008.05505.x

10.1111/j.1472-4642.2010.00725.x

10.1017/S0376892997000088

Gaston K.J., 2003, The Structure and Dynamics of Geographic Ranges, 10.1093/oso/9780198526407.001.0001

10.1016/j.tree.2010.03.002

10.1093/sysbio/syq005

10.1111/j.1365-2664.2007.01408.x

10.2307/1934142

10.1890/06-1060.1

10.1111/j.1472-4642.2007.00342.x

10.1890/06-0539

Hastie T., 1990, Generalized Additive Models

10.1111/j.1466-8238.2007.00345.x

10.1002/joc.1276

10.1016/S0304-3800(01)00396-9

10.1023/A:1021251113462

10.1101/SQB.1957.022.01.039

10.1017/S0094837300026932

10.1111/j.1472-4642.2008.00496.x

10.1126/science.1231535

10.1890/03-0820

10.1111/j.1755-263X.2010.00097.x

10.1111/j.1365-2699.2011.02663.x

10.1111/j.0014-3820.2006.tb01893.x

10.2307/3237290

10.1111/j.0906-7590.2005.03957.x

10.1111/j.1600-0587.2009.06039.x

10.1007/978-1-4899-3242-6

10.1086/282827

10.1111/jbi.12006

10.1111/j.1365-2699.2007.01720.x

Nix H.A., 1986, Atlas of Elapid Snakes of Australia, 4

10.1111/j.1365-2699.2005.01396.x

Ortega‐Huerta M.A., 2008, Modeling ecological niches and predicting geographic distributions: a test of six presence‐only methods, Revista Mexicana de la Biodiversidad, 79, 205

10.1016/j.ecolmodel.2013.04.011

10.1111/j.1365-2699.2006.01594.x

10.1086/378926

10.17161/bi.v3i0.29

10.1111/j.1365-2699.2010.02456.x

10.4322/natcon.2012.019

10.23943/princeton/9780691136868.001.0001

10.1126/science.285.5431.1265

10.1016/j.ecolmodel.2005.03.026

10.1093/icb/42.3.431

Qiao H.(2010)Construction and Comparison of Species’ Potential Distribution Models. PhD thesis.Graduate University of Chinese Academy of Sciences Beijing.

10.1371/journal.pone.0043327

Rangel T.F.L.V.B., 2009, BIOENSEMBLES 1.0. Software for Computer Intensive Ensemble Forecasting of Species Distributions Under Climate Change

Ridgeway G., 1999, The state of boosting, Computing Science and Statistics, 31, 172

10.1016/j.ecolmodel.2012.04.001

10.1111/j.1365-2699.2004.01076.x

10.17161/bi.v2i0.4

Soberón J., 2011, Ecological niche shifts and environmental space anisotropy: a cautionary note, Revista Mexicana de Biodiversidad, 82, 1348

10.1080/136588199241391

10.1016/S0304-3800(01)00388-X

10.1038/nature02121

10.1111/j.1600-0587.2008.05742.x

Udvardy M.D.F., 1969, Dynamic Zoogeography

10.1890/10-1171.1