Mẫu hình chuyển hóa liên quan đến nitơ của khả năng nhạy cảm với sự nhiễm bệnh của Botrytis cinerea trong thân cây cà chua (Solanum lycopersicum)

Planta - 2023
Nathalie Lacrampe1, Sophie Colombié2, Doriane Dumont1, Philippe C. Nicot3, François Lecompte1, Raphaël Lugan4
1PSH Unit, INRAE, 84914, Avignon, France
2UMR 1332 BFP, INRAE, Univ Bordeaux, 33883, Villenave d’Ornon, France
3Plant Pathology Unit, INRAE, 84140, Montfavet, France
4UMR Qualisud, Avignon Université, 84916, Avignon, France

Tóm tắt

Tóm tắt Kết luận chính Căng thẳng nitơ nghiêm trọng cho phép tích lũy các hợp chất dựa trên carbon nhưng cản trở sự tích lũy hợp chất dựa trên nitơ cần thiết để giảm độ nhạy cảm của thân cây cà chua đối vớiBotrytis cinerea. Tóm tắt Botrytis cinerea, một loại nấm sợi hoại sinh, tạo ra những tổn thương tiềm tàng gây chết trên thân cây của các cây bị nhiễm bệnh. Mức độ nhạy cảm khác nhau đối với B. cinerea được thu được từ một giống cà chua được trồng ở nhiều mức độ nồng độ nitrate khác nhau: cung cấp nitơ thấp dẫn đến độ nhạy cảm cao trong khi cung cấp nitơ cao mang lại sức đề kháng mạnh. Những sai lệch chuyển hóa và đặc điểm sinh lý do cả nhiễm bệnh và hạn chế nitơ gây ra đã được nghiên cứu trong mô thân không triệu chứng xung quanh tổn thương hoại tử. Trước khi nhiễm bệnh, các cây thiếu nitơ cho thấy mức độ hợp chất dựa trên nitơ như axit amin, protein và glutathione bị giảm và mức độ hợp chất dựa trên carbon và các hợp chất phòng thủ như α-tomatine và axit chlorogenic tăng cao. Sau khi tiêm nhiễm B. cinerea, tất cả các cây đều biểu hiện một vài phản ứng chung, chủ yếu là tích lũy alanine và giảm galactinol. Metabolome của các cây kháng được trồng trong điều kiện cung cấp nitơ cao không cho thấy thay đổi đáng kể nào sau khi nhiễm. Ngược lại, metabolome của các cây nhạy cảm được trồng trong điều kiện cung cấp nitơ thấp cho thấy các điều chỉnh chuyển hóa lớn, bao gồm những thay đổi trong chuyển hóa trung tâm xung quanh glutamate và các con đường hô hấp, cho thấy sự huy động tài nguyên tích cực và sản xuất năng lượng cũng như sức mạnh khử. Các quá trình chuyển hóa redox và phòng thủ cũng được kích thích bởi nhiễm bệnh ở các cây được trồng với lượng nitơ thấp; glutathione và axit chlorogenic tích lũy, cũng như các metabolite có vai trò phòng thủ gây tranh cãi hơn, chẳng hạn như polyamines, GABA, axit amin chuỗi phân nhánh và phytosterol. Tất cả các kết quả cho thấy rằng việc thiếu nitơ, mặc dù dẫn tới sự gia tăng các metabolite thứ cấp ngay cả trước khi bệnh nhân tấn công, đã có thể làm suy yếu mức độ protein phòng thủ cơ bản và làm chậm hoặc làm giảm các phản ứng được kích thích. Vai trò của galactinol, alanine, cycloartenol và citramalate trong phản ứng của thân cây cà chua đối với B. cinerea được báo cáo ở đây lần đầu tiên.

Từ khóa


Tài liệu tham khảo

Ai G, Zhu H, Fu X et al (2021) Phytophthora infection signals-induced translocation of NAC089 is required for endoplasmic reticulum stress response-mediated plant immunity. Plant J 108:67–80. https://doi.org/10.1111/tpj.15425

Allwood JW, Williams A, Uthe H et al (2021) Unravelling plant responses to stress—the importance of targeted and untargeted metabolomics. Metabolites. https://doi.org/10.3390/metabo11080558

Asselbergh B, Curvers K, França SC et al (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877. https://doi.org/10.1104/pp.107.099226

Aubert Y, Widemann E, Miesch L et al (2015) CYP94-mediated jasmonoyl-isoleucine hormone oxidation shapes jasmonate profiles and attenuates defence responses to Botrytis cinerea infection. J Exp Bot 66:3879–3892. https://doi.org/10.1093/jxb/erv190

Bauer S, Mekonnen DW, Geist B et al (2020) The isoleucic acid triad: distinct impacts on plant defense, root growth, and formation of reactive oxygen species. J Exp Bot 71:4258–4270. https://doi.org/10.1093/jxb/eraa160

Biais B, Bénard C, Beauvoit B et al (2014) Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism. Plant Physiol 164:1204–1221. https://doi.org/10.1104/pp.113.231241

Bolton MD (2009) Primary metabolism and plant defense—fuel for the fire. Mol Plant-Microbe Interact 22:487–497. https://doi.org/10.1094/MPMI-22-5-0487

Camañes G, Scalschi L, Vicedo B et al (2015) An untargeted global metabolomic analysis reveals the biochemical changes underlying basal resistance and priming in Solanum lycopersicum, and identifies 1-methyltryptophan as a metabolite involved in plant responses to Botrytis cinerea and Pseudomonas syringae. Plant J 84:125–139. https://doi.org/10.1111/tpj.12964

Chen S, Fu Y, Peng X et al (2021) Trichoderma harzianum enhances resistance to Botrytis cinerea by promoting photosynthesis, redox homeostasis and secondary metabolites in tomato. SSRN. https://doi.org/10.2139/ssrn.3990631

Cho Y-H, Yoo S-D (2011) Signaling role of fructose mediated by FINS1/FBP in Arabidopsis thaliana. PLoS Genet 7:e1001263. https://doi.org/10.1371/journal.pgen.1001263

Choquer M, Fournier E, Kunz C et al (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10. https://doi.org/10.1111/j.1574-6968.2007.00930.x

Cramer MD, Hawkins HJ, Verboom GA (2009) The importance of nutritional regulation of plant water flux. Oecologia 161:15–24. https://doi.org/10.1007/s00442-009-1364-3

De Cremer K, Mathys J, Vos C et al (2013) RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant Cell Environ 36:1992–2007. https://doi.org/10.1111/pce.12106

Diab H, Limami AM (2016) Reconfiguration of N metabolism upon hypoxia stress and recovery: roles of alanine aminotransferase (AlaAt) and glutamate dehydrogenase (GDH). Plants 5:345–367. https://doi.org/10.3390/plants5020025

Donahue JL, Alford SR, Torabinejad J et al (2010) The Arabidopsis thaliana myo-inositol 1-phosphate synthase1 gene is required for myo-inositol synthesis and suppression of cell death. Plant Cell 22:888–903. https://doi.org/10.1105/tpc.109.071779

Dulermo T, Bligny R, Gout E, Cotton P (2009) Amino acid changes during sunflower infection by the necrotrophic fungus B. cinerea. Plant Signal Behav 4:859–861. https://doi.org/10.4161/psb.4.9.9397

Dumont D, Danielato G, Chastellier A et al (2020) Multi-targeted metabolic profiling of carotenoids, phenolic compounds and primary metabolites in goji (Lycium spp.) berry and tomato (Solanum lycopersicum) reveals inter and intra genus biomarkers. Metabolites 10:1–17. https://doi.org/10.3390/metabo10100422

Edlich W, Lorenz G, Lyr H et al (1989) New aspects on the infection mechanism of Botrytis cinerea Pers. Netherlands J Plant Pathol 95:53–62. https://doi.org/10.1007/BF01974284

Fagard M, Launay A, Clément G et al (2014) Nitrogen metabolism meets phytopathology. J Exp Bot 65:5643–5656. https://doi.org/10.1093/jxb/eru323

Feussner I, Polle A (2015) What the transcriptome does not tell—proteomics and metabolomics are closer to the plants’ patho-phenotype. Curr Opin Plant Biol 26:26–31. https://doi.org/10.1016/j.pbi.2015.05.023

Formela-Luboińska M, Chadzinikolau T, Drzewiecka K et al (2020) The role of sugars in the regulation of the level of endogenous signaling molecules during defense response of yellow lupine to Fusarium oxysporum. Int J Mol Sci 21:4133. https://doi.org/10.3390/ijms21114133

Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50:5751–5780. https://doi.org/10.1021/jf020560c

Gao P, Zhang H, Yan H et al (2021) RcTGA1 and glucosinolate biosynthesis pathway involvement in the defence of rose against the necrotrophic fungus Botrytis cinerea. BMC Plant Biol 21:1–17. https://doi.org/10.1186/s12870-021-02973-z

Gaufichon L, Reisdorf-Cren M, Rothstein SJ et al (2010) Biological functions of asparagine synthetase in plants. Plant Sci 179:141–153. https://doi.org/10.1016/j.plantsci.2010.04.010

Griebel T, Zeier J (2010) A role for β-sitosterol to stigmasterol conversion in plant-pathogen interactions. Plant J 63:254–268. https://doi.org/10.1111/j.1365-313X.2010.04235.x

Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849. https://doi.org/10.1093/bioinformatics/btw313

Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67. https://doi.org/10.1016/S1360-1385(01)02186-0

Hoffland E, Van Beusichem ML, Jeger MJ (1999) Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210:263–272. https://doi.org/10.1023/A:1004661913224

Holz G, Coertze S, Williamson B (2007) The ecology of Botrytis on plant surfaces. Botrytis Biol Pathol Control. https://doi.org/10.1007/978-1-4020-2626-3_2

Hong Y-S, Martinez A, Liger-Belair G et al (2012) Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. J Exp Bot 63:5773–5785. https://doi.org/10.1093/jxb/ers228

Kanazawa J, Kakisaka K, Suzuki Y et al (2022) Excess fructose enhances oleatic cytotoxicity via reactive oxygen species production and causes necroptosis in hepatocytes. J Nutr Biochem 107:109052. https://doi.org/10.1016/j.jnutbio.2022.109052

Kim MS, Cho SM, Kang EY et al (2008) Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Mol Plant-Microbe Interact 21:1643–1653. https://doi.org/10.1094/MPMI-21-12-1643

Kim DS, Na H, Kwack Y, Chun C (2014) Secondary metabolite profiling in various parts of tomato plants. Korean J Hortic Sci Technol 32:252–260. https://doi.org/10.7235/hort.2014.13165

Kuźniak E, Sklodowska M (1999) The effect of Botrytis cinerea infection on ascorbate-glutathione cycle in tomato leaves. Plant Sci 148:69–76. https://doi.org/10.1016/S0168-9452(99)00121-1

Lacrampe N, Lopez-Lauri F, Lugan R et al (2021) Regulation of sugar metabolism genes in the nitrogen-dependent susceptibility of tomato stems to Botrytis cinerea. Ann Bot 127:143–154. https://doi.org/10.1093/aob/mcaa155

Larbat R, Le Bot J, Bourgaud F et al (2012) Organ-specific responses of tomato growth and phenolic metabolism to nitrate limitation. Plant Biol 14:760–769. https://doi.org/10.1111/j.1438-8677.2012.00564.x

Lecompte F, Abro MA, Nicot PC (2010) Contrasted responses of Botrytis cinerea isolates developing on tomato plants grown under different nitrogen nutrition regimes. Plant Pathol 59:891–899. https://doi.org/10.1111/j.1365-3059.2010.02320.x

Lecompte F, Abro MA, Nicot PC (2013) Can plant sugars mediate the effect of nitrogen fertilization on lettuce susceptibility to two necrotrophic pathogens: Botrytis cinerea and Sclerotinia sclerotiorum? Plant Soil 369:387–401. https://doi.org/10.1007/s11104-012-1577-9

Lecompte F, Nicot PC, Ripoll J et al (2017) Reduced susceptibility of tomato stem to the necrotrophic fungus Botrytis cinerea is associated with a specific adjustment of fructose content in the host sugar pool. Ann Bot 119:931–943. https://doi.org/10.1093/aob/mcw240

Li P, Wind JJ, Shi X et al (2011) Fructose sensitivity is suppressed in Arabidopsis by the transcription factor ANAC089 lacking the membrane-bound domain. PNAS 108:3436–3441. https://doi.org/10.1073/pnas.1018665108

Li X, Zhang Y, Huang L et al (2014) Tomato SlMKK2 and SlMKK4 contribute to disease resistance against Botrytis cinerea. BMC Plant Biol 14:1–17. https://doi.org/10.1186/1471-2229-14-166

Li L, Dou N, Zhang H, Wu C (2021) The versatile GABA in plants. Plant Signal Behav. https://doi.org/10.1080/15592324.2020.1862565

Limami AM, Glévarec G, Ricoult C et al (2008) Concerted modulation of alanine and glutamate metabolism in young Medicago truncatula seedlings under hypoxic stress. J Exp Bot 59:2325–2335. https://doi.org/10.1093/jxb/ern102

Lionetti V, Fabri E, De Caroli M et al (2017) Three pectin methylesterase inhibitors protect cell wall integrity for arabidopsis immunity to Botrytis. Plant Physiol 173:1844–1863. https://doi.org/10.1104/pp.16.01185

Løvdal T, Olsen KM, Slimestad R et al (2010) Synergetic effects of nitrogen depletion, temperature, and light on the content of phenolic compounds and gene expression in leaves of tomato. Phytochemistry 71:605–613. https://doi.org/10.1016/j.phytochem.2009.12.014

Marina M, Maiale SJ, Rossi FR et al (2008) Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Plant Physiol 147:2164–2178. https://doi.org/10.1104/pp.108.122614

Martínez G, Regente M, Jacobi S et al (2017) Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pestic Biochem Physiol 140:30–35. https://doi.org/10.1016/j.pestbp.2017.05.012

Massot C, Bancel D, Lauri FL et al (2013) High temperature inhibits ascorbate recycling and light stimulation of the ascorbate pool in tomato despite increased expression of biosynthesis genes. PLoS ONE 8:1–13. https://doi.org/10.1371/journal.pone.0084474

Meng PH, Raynaud C, Tcherkez G et al (2009) Crosstalks between myo-inositol metabolism, programmed cell death and basal immunity in Arabidopsis. PLoS ONE. https://doi.org/10.1371/journal.pone.0007364

Meyer RC, Steinfath M, Lisec J et al (2007) The metabolic signature related to high plant growth rate in Arabidopsis thaliana. PNAS USA 104:4759–4764. https://doi.org/10.1073/pnas.0609709104

Mhlongo MI, Piater LA, Steenkamp PA et al (2020) Metabolic profiling of PGPR-treated tomato plants reveal priming-related adaptations of secondary metabolites and aromatic amino acids. Metabolites 10:210. https://doi.org/10.3390/metabo10050210

Mitchell HJ, Hall JL, Barber MS (1994) Elicitor-induced cinnamyl alcohol dehydrogenase activity in lignifying wheat (Triticum aestivum L.) leaves. Plant Physiol 104:551–556. https://doi.org/10.1104/pp.104.2.551

Miyashita Y, Dolferus R, Ismond KP, Good AG (2007) Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. Plant J 49:1108–1121. https://doi.org/10.1111/j.1365-313X.2006.03023.x

Nambeesan S, AbuQamar S, Laluk K et al (2012) Polyamines attenuate ethylene-mediated defense responses to abrogate resistance to Botrytis cinerea in tomato. Plant Physiol 158:1034–1045. https://doi.org/10.1104/pp.111.188698

Nicot P, Bardin M, Debruyne F et al (2013) Effect of nitrogen fertilisation of strawberry plants on the efficacy of defence-stimulating biocontrol products against Botrytis cinerea. IOBC-WPRS Bull 88:39–42

Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263. https://doi.org/10.1104/pp.108.122465

Nishizawa-Yokoi A, Yabuta Y, Shigeoka S (2008) The contribution of carbohydrates including raffinose family oligosaccharides and sugar alcohols to protection of plant cells from oxidative damage. Plant Signal Behav 3:1016–1018. https://doi.org/10.4161/psb.6738

Pitsili E, Phukan UJ, Coll NS (2020) Cell death in plant immunity. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a036483

Quidde T, Osbourn AE, Tudzynski P (1998) Detoxification of α-tomatine by Botrytis cinerea. Physiol Mol Plant Pathol 52:151–165. https://doi.org/10.1006/pmpp.1998.0142

Renard CMGC, Voragen AGJ, Thibault JF, Pilnik W (1990) Studies on apple protopectin: I. Extraction of insoluble pectin by chemical means. Carbohydr Polym 12:9–25. https://doi.org/10.1016/0144-8617(90)90101-W

Renau-Morata B, Molina RV, Minguet EG et al (2021) Integrative transcriptomic and metabolomic analysis at organ scale reveals gene modules involved in the responses to suboptimal nitrogen supply in tomato. Agronomy. https://doi.org/10.3390/agronomy11071320

Rossi FR, Krapp AR, Bisaro F et al (2017) Reactive oxygen species generated in chloroplasts contribute to tobacco leaf infection by the necrotrophic fungus Botrytis cinerea. Plant J 92:761–773. https://doi.org/10.1111/tpj.13718

Sandrock RW, VanEtten HD (1998) Fungal sensitivity to and enzymatic degradation of the phytoanticipin α-tomatine. Phytopathology 88:137–143. https://doi.org/10.1094/PHYTO.1998.88.2.137

Scheible WR, Krapp A, Stitt M (2000) Reciprocal diurnal changes of phosphoenolpyruvate carboxylase expression and cytosolic pyruvate kinase, citrate synthase and NADP-isocitrate dehydrogenase expression regulate organic acid metabolism during nitrate assimilation in tobacco leaves. Plant Cell Environ 23:1155–1167. https://doi.org/10.1046/j.1365-3040.2000.00634.x

Seifi HS, Curvers K, De Vleesschauwer D et al (2013) Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the ABA-deficient sitiens mutant of tomato leads to resistance against Botrytis cinerea. New Phytologist 199:490–504. https://doi.org/10.1111/nph.12283

Seifi HS, De Vleesschauwer D, Aziz A, Höfte M (2014) Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy. Plant Signal Behav 9:e27995. https://doi.org/10.4161/psb.27995

Sérino S, Costagliola G, Gomez L (2019) Lyophilized tomato plant material: validation of a reliable extraction method for the analysis of vitamin C. J Food Compos Anal 81:37–45. https://doi.org/10.1016/j.jfca.2019.05.001

Simon UK, Polanschütz LM, Koffler BE, Zechmann B (2013) High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H2O2 distribution during Botrytis cinerea infection in Arabidopsis. PLoS ONE 8:e65811. https://doi.org/10.1371/journal.pone.0065811

Sivakumaran A, Akinyemi A, Mandon J et al (2016) ABA suppresses Botrytis cinerea elicited NO production in tomato to influence H2O2 generation and increase host susceptibility. Front Plant Sci 7:1–12. https://doi.org/10.3389/fpls.2016.00709

Sonawane PD, Pollier J, Panda S et al (2016) Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plants. https://doi.org/10.1038/nplants.2016.205

Soulie MC, Koka SM, Floch K et al (2020) Plant nitrogen supply affects the Botrytis cinerea infection process and modulates known and novel virulence factors. Mol Plant Pathol 21:1436–1450. https://doi.org/10.1111/mpp.12984

Stare T, Stare K, Weckwerth W et al (2017) Comparison between proteome and transcriptome response in potato (Solanum tuberosum L.) leaves following potato virus Y (PVY) infection. Proteomes 5:14. https://doi.org/10.3390/proteomes5030014

Strack D, Gross W, Wray V, Grotjahn L (1987) Enzymic synthesis of caffeoylglucaric acid from chlorogenic acid and glucaric acid by a protein preparation from tomato cotyledons. Plant Physiol 83:475–478. https://doi.org/10.1104/pp.83.3.475

Sugimoto N, Engelgau P, Daniel Jones A et al (2021) Citramalate synthase yields a biosynthetic pathway for isoleucine and straight- and branched-chain ester formation in ripening apple fruit. PNAS USA. https://doi.org/10.1073/pnas.2009988118

Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

Tang H, Bi H, Liu B et al (2021) WRKY33 interacts with WRKY12 protein to up-regulate RAP2.2 during submergence induced hypoxia response in Arabidopsis thaliana. New Phytol 229:106–125. https://doi.org/10.1111/nph.17020

Thévenot EA, Roux A, Xu Y et al (2015) Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res 14:3322–3335. https://doi.org/10.1021/acs.jproteome.5b00354

Tyerman SD, Wignes JA, Kaiser BN (2017) Root hydraulic and aquaporin responses to N availability. Signal Commun Plants. https://doi.org/10.1007/978-3-319-49395-4_10

Urbanczyk-Wochniak E, Fernie AR (2005) Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J Exp Bot 56:309–321. https://doi.org/10.1093/jxb/eri059

Valeri MC, Novi G, Weits DA et al (2021) Botrytis cinerea induces local hypoxia in Arabidopsis leaves. New Phytol 229:173–185. https://doi.org/10.1111/nph.16513

Van Baarlen P, Woltering EJ, Staats M, Van Kan JAL (2007) Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol Plant Pathol 8:41–54. https://doi.org/10.1111/j.1364-3703.2006.00367.x

van Rensburg HCJ, Van den Ende W (2020) Priming with γ-aminobutyric acid against Botrytis cinerea reshuffles metabolism and reactive oxygen species: dissecting signalling and metabolism. Antioxidants 9:1–22. https://doi.org/10.3390/antiox9121174

van Rensburg HCJ, Limami AM, Van den Ende W (2021) Spermine and spermidine priming against Botrytis cinerea modulates ros dynamics and metabolism in Arabidopsis. Biomolecules 11:1–25. https://doi.org/10.3390/biom11020223

Vega A, Canessa P, Hoppe G et al (2015) Transcriptome analysis reveals regulatory networks underlying differential susceptibility to Botrytis cinerea in response to nitrogen availability in Solanum lycopersicum. Front Plant Sci 6:1–17. https://doi.org/10.3389/fpls.2015.00911

Wang W, Yang X, Tangchaiburana S et al (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20:3163–3179. https://doi.org/10.1105/tpc.108.060053

Wang K, Senthil-Kumar M, Ryu CM et al(2012) Phytosterols play a key role in plant innate immunity against bacterial pathogens by regulating nutrient efflux into the apoplast. Plant Physiol 158:1789–1802. https://doi.org/10.1104/pp.111.189217

Windram O, Madhou P, Mchattie S et al (2012) Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis. Plant Cell 24:3530–3557. https://doi.org/10.1105/tpc.112.102046

Yang Z-T, Wang M-J, Sun L et al (2014) The membrane-associated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. PLoS Genet 10:e1004243. https://doi.org/10.1371/journal.pgen.1004243

Yang J, Sun C, Zhang Y et al (2017) Induced resistance in tomato fruit by γ-aminobutyric acid for the control of alternaria rot caused by Alternaria alternata. Food Chem 221:1014–1020. https://doi.org/10.1016/j.foodchem.2016.11.061

Zhao Y, Wei T, Yin KQ et al (2012) Arabidopsis RAP2.2 plays an important role in plant resistance to Botrytis cinerea and ethylene responses. New Phytol 195:450–460. https://doi.org/10.1111/j.1469-8137.2012.04160.x

Zhou Y, Liu Y, Wang S et al (2017) Molecular cloning and characterization of galactinol synthases in Camellia sinensis with different responses to biotic and abiotic stressors. J Agric Food Chem 65:2751–2759. https://doi.org/10.1021/acs.jafc.7b00377