Nifedipine làm suy yếu cơn bùng phát hô hấp của bạch cầu trung tính thông qua cơ chế không liên quan đến chẹn kênh canxi

Molecular and Cellular Biochemistry - Tập 93 - Trang 27-34 - 1990
K. Nalini1, K. I. Andrabi2, N. K. Ganguly2, P. L. Wahi1
1Departments of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
2Department of Experimental Medicine, PGIMER, Chandigarh, India

Tóm tắt

Việc sản xuất siêu ôxy bởi bạch cầu trung tính của chuột bị ức chế bởi sự tiếp xúc với nifedipine theo cách phụ thuộc vào liều lượng. Sự ức chế hấp thu Ca2+ do nifedipine gây ra dường như không phải là nguyên nhân gây ra hiệu ứng quan sát được, vì sự làm giàu hoặc cạn kiệt Ca2+ ngoại bào không mang lại sự đảo ngược đáng kể nào đối với sự ức chế. Ca2+ trong huyết tương tự do, đo bằng huỳnh quang Quin 2AM, không cho thấy sự thay đổi đáng kể nào, cho thấy rằng hiệu ứng này không phụ thuộc vào việc ức chế dòng Ca2+. Thêm vào đó, nifedipine gây ra sự ức chế đáng kể (p < 0.01) đối với hoạt động của NADPH oxidase. Dữ liệu của chúng tôi cho thấy nifedipine ức chế sản xuất siêu ôxy một cách độc lập với việc ức chế dòng Ca2+ và hỗ trợ giả thuyết rằng các chất đối kháng Ca2+ ảnh hưởng đến chức năng tế bào thông qua quá trình không có liên quan đến Ca2+.

Từ khóa

#nifedipine #bạch cầu trung tính #siêu ôxy #NADPH oxidase #canxi

Tài liệu tham khảo

Kishida H: Application of Call antagonists in patients with prinzmetal angina pectoris. In: Fleckenstein A, Roskamm H (eds.) Calcium Antagonism. Berlin, Springer Verlag, 1980: 246–251 Opie IH: Calcium antagonists and cardiovascular disease. Raven Press, New York, 1983 Stone PH, Antman EM, Muller JE, Braunwald E: Ca channel blocking agents in the treatment of cardiovascular disorders. Ann Intern Med 93(6): 886–904, 1980 Heupler FA Jr, Proudfit WE Nifedipine therapy for refactory coronary arterial spasm. Am J Cardiol 44: 798–803, 1979 Carafoli E, Penniston JT: The calcium signal. Scientific American 70–78, 1985 Caraboeuf E: Ionic basis of electrical activity in cardiac tissues. Am J Physiol 234: H101–116, 1978 Fleckenstein Z: Calcium and the heart. Academic Press, London, 1970 MacVicar BA: Voltage dependent calcium channels in glial cells. Science 226: 1345–1347, 1984 Fukushima Y, Hagiwara S: Voltage gated Ca channel in mouse myeloma cells. Proc Natl Acad Sci USA 80: 2240–2242, 1983 Dale J, Landmark KH, Myhre E: The effect of nifedipine a calcium antagonist on platelet function. J Am Heart J 103–105, 1983 Kazanjian PH, Pennington JE: Influences of drugs that block Ca channels on the microbicidal functions of human neutrophils. J Infect Dis 151(1): 15–22, 1985 Irita K, Fujita I, Takeshige K, Minakami S, Yoshitake J: Ca channel antagonist induced inhibition of superoxide production in human neutrophils. Mechanisms independent of antagonizing calcium influx. Biochem Pharmacol 35(20): 3465–3471, 1986 Weiss ES, Ahmed SA, Thakur MI, Welch MJ, Coleman RE, Sobel BE: Imaging of the inflammatory response in ischaemic canine myocardium with indium-III labelled leukocytes. Am J Cardiol 40: 195, 1977 Romson JI, Hook BG, Kunkel SI: Reduction of the extent of ischaemic myocardial injury by neutrophil depletion in the dog. Circ 67: 1016–1023, 1983 Babior BM: Oxidants from phagocytes; agents of defense and destruction. Blood 64: 959–966, 1984 Blake DR, Allen RE, Lucec J: Free radicals in biological system. British Med Bulletin 43: 371–385, 1987 Fantone JC, Ward PA: Role of derived free radicals and metabolites in leukocyte dependent inflammatory reactions. Am J Pathol 107(3): 397–418, 1982 Ehara T, Daufman T: The voltage and time dependent effects of (−) verapamil on slow inward current in isolated cat ventricular myocardium. J Pharmacol Expt Ther 207: 49–55, 1978 Zsoter TT, Church JG: Calcium antagonists. Pharmodynamic effects and mechanism of action. Drugs 25: 93–113, 1983 Boyum A: Isolation of mononuclear cells and granulocytes from human blood. Scan J Clin Lab Invest 21 Suppl 97: 77–89, 1968 Naccache PH, Shaffi RI, Borgeat P, Goetzl EJ: Mono and dihydroxy eicosatetraenoic acids alter calcium homeostasis in rabbit neutrophils. J Clin Invest 67: 1584–1587, 1981 Tsein R, Pozzan J, Rink T: Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94: 325–334, 1982 English D, Rolowff JS, Leukens JN: Regulation of human polymorphonuclear leukocyte superoxide release by cellular responses to chemotactic peptides. J Immunol 126: 165–171, 1981 Cheung K, Archibald AC, Robinson MF: Luminol dependent chemiluminescence produced by PMN's stimulated by immune complex. Aus J Exptal Biol Med Sci 62: 403–419, 1984 Van Berkel Theo JC, Kruiji JK: Distribution and some properties of NADPH and NADH oxidase in parenchymal liver cells. Archives of Biochemistry and Biophysics 179: 8–14, 1977 Yamaguchi J, Kaneda M, Kakinuma K: Essential requirements of magnesium ion for optimal activity of the NADPH oxidase of guinea pig polymorphonuclear leukocytes. Biochem Biophys Res Commun 115: 261–267, 1983 Hughes BP, Milton SE, Baritt GJ, Auld AM: Studies with verapamil and nifedipine provide evidence for the presence in the liver cell plasma membrane of two types of Ca2+ inflow transporter which are dissimilar to potential operated calcium channels. Biochem Pharmacol 35: 18, 3045–3052, 1986 Janis RA, Scriabine A: Sites of action of Ca2+ channel inhibitors. Biochem Pharmacol 32: 23, 3499–3507, 1983 Pang DC, Speralakis N: Differential action of Ca2+ antagonists on calcium binding to cardiac sarcolemma. Eur J Pharmacol 16(8): 403–409, 1982 Kubo K, Matsuda Y, Kase H, Yamada K: Inhibition of CaM dependent cyclic nucleotide phosphodiesterase by Flunarizine-calcium entry blocker. Biochem Biophys Res Commun 124: 315, 1984 Elferink JGR, Dierkauf M: The effect of verapamil and other calcium antagonists on chemotaxis of polymorpholymphonucleocytes. Biochem Pharmacol 33: 35–39, 1984 Elferink JGR: Interference of calcium antagonists verapamil and nifedipine with lysosomal enzyme release from rabbit polymorphonuclear leucocytes. Drug Res 32: 1417–1420, 1982 Oseas RS, Boxer LA, Butterick C, Bachner RL: Differences in PMN aggregating response among several species in response to chemotactic stimulation. J Lab Clin Med 96: 213–221, 1980 Schimchowitz L, Menta J, Spilberg I: Generation of superoxide radicals by human neutrophils. J Lab Clin Med 93: 583–593, 1979 Pamela Maher, Singer SJ: Structural changes in membranes produced by the binding of small amphipathic molecules. Biochemistry 23: 232, 1984