Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium

Nature Medicine - Tập 14 Số 11 - Trang 1247-1255 - 2008
Emyr Lloyd‐Evans1, Anthony J. Morgan1, Xingxuan He2, David A. Smith1, Elena Elliot-Smith1, Daniel J. Sillence3, Grant C. Churchill1, Edward H. Schuchman2, Antony Galione1, Frances M. Platt1
1Department of Pharmacology, University of Oxford, Oxford, UK
2Dept of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, USA
3Present address: Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, UK.,

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vanier, M.T. & Millat, G. Niemann-Pick disease type C. Clin. Genet. 64, 269–281 (2003).

Ko, D.C., Gordon, M.D., Jin, J.Y. & Scott, M.P. Dynamic movements of organelles containing Niemann-Pick C1 protein: NPC1 involvement in late endocytic events. Mol. Biol. Cell 12, 601–614 (2001).

Liscum, L. Niemann-Pick type C mutations cause lipid traffic jam. Traffic 1, 218–225 (2000).

Davies, J.P., Chen, F.W. & Ioannou, Y.A. Transmembrane molecular pump activity of Niemann-Pick C1 protein. Science 290, 2295–2298 (2000).

Naureckiene, S. et al. Identification of HE1 as the second gene of Niemann-Pick C disease. Science 290, 2298–2301 (2000).

Babalola, J.O. et al. Development of an assay for the intermembrane transfer of cholesterol by Niemann-Pick C2 protein. Biol. Chem. 388, 617–626 (2007).

Butler, J.D., Vanier, M.T. & Pentchev, P.G. Niemann-Pick C disease: cystine and lipids accumulate in the murine model of this lysosomal cholesterol lipidosis. Biochem. Biophys. Res. Commun. 196, 154–159 (1993).

te Vruchte, D. et al. Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. J. Biol. Chem. 279, 26167–26175 (2004).

Patterson, M.C. & Platt, F. Therapy of Niemann-Pick disease, type C. Biochim. Biophys. Acta 1685, 77–82 (2004).

Patterson, M.C. et al. The effect of cholesterol-lowering agents on hepatic and plasma cholesterol in Niemann-Pick disease type C. Neurology 43, 61–64 (1993).

Erickson, R.P., Garver, W.S., Camargo, F., Hossain, G.S. & Heidenreich, R.A. Pharmacological and genetic modifications of somatic cholesterol do not substantially alter the course of CNS disease in Niemann-Pick C mice. J. Inherit. Metab. Dis. 23, 54–62 (2000).

Somers, K.L. et al. Effects of dietary cholesterol restriction in a feline model of Niemann-Pick type C disease. J. Inherit. Metab. Dis. 24, 427–436 (2001).

Lachmann, R.H. et al. Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C. Neurobiol. Dis. 16, 654–658 (2004).

Patterson, M.C., Vecchio, D., Prady, H., Abel, L. & Wraith, J.E. Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study. Lancet Neurol. 6, 765–772 (2007).

Ginzburg, L., Kacher, Y. & Futerman, A.H. The pathogenesis of glycosphingolipid storage disorders. Semin. Cell Dev. Biol. 15, 417–431 (2004).

Jeyakumar, M., Dwek, R.A., Butters, T.D. & Platt, F.M. Storage solutions: treating lysosomal disorders of the brain. Nat. Rev. Neurosci. 6, 713–725 (2005).

Christensen, K.A., Myers, J.T. & Swanson, J.A. pH-dependent regulation of lysosomal calcium in macrophages. J. Cell Sci. 115, 599–607 (2002).

Bach, G., Chen, C.S. & Pagano, R.E. Elevated lysosomal pH in mucolipidosis type IV cells. Clin. Chim. Acta 280, 173–179 (1999).

Parkesh, R. et al. Cell-permeant NAADP: A novel chemical tool enabling the study of Ca2+ signalling in intact cells. Cell Calcium 43, 531–538 (2008).

Galione, A. & Churchill, G.C. Interactions between calcium release pathways: multiple messengers and multiple stores. Cell Calcium 32, 343–354 (2002).

Churchill, G.C. et al. NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs. Cell 111, 703–708 (2002).

Piper, R.C. & Luzio, J.P. CUPpling calcium to lysosomal biogenesis. Trends Cell Biol. 14, 471–473 (2004).

Bilmen, J.G., Khan, S.Z., Javed, M.H. & Michelangeli, F. Inhibition of the SERCA Ca2+ pumps by curcumin. Curcumin putatively stabilizes the interaction between the nucleotide-binding and phosphorylation domains in the absence of ATP. Eur. J. Biochem. 268, 6318–6327 (2001).

Infante, R.E. et al. Purified NPC1 protein: II. Localization of sterol binding to a 240–amino acid soluble luminal loop. J. Biol. Chem. 283, 1064–1075 (2008).

Malathi, K. et al. Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C–related protein reveals a primordial role in subcellular sphingolipid distribution. J. Cell Biol. 164, 547–556 (2004).

Sun, X. et al. Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1. Am. J. Hum. Genet. 68, 1361–1372 (2001).

Houben, E. et al. Differentiation-associated expression of ceramidase isoforms in cultured keratinocytes and epidermis. J. Lipid Res. 47, 1063–1070 (2006).

Kagedal, K., Zhao, M., Svensson, I. & Brunk, U.T. Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335–343 (2001).

Kitatani, K., Idkowiak-Baldys, J. & Hannun, Y.A. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal. 20, 1010–1018 (2008).

Tettamanti, G., Bassi, R., Viani, P. & Riboni, L. Salvage pathways in glycosphingolipid metabolism. Biochimie 85, 423–437 (2003).

Maceyka, M. et al. SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280, 37118–37129 (2005).

Ozbay, T., Rowan, A., Leon, A., Patel, P. & Sewer, M.B. Cyclic adenosine 5′-monophosphate–dependent sphingosine-1-phosphate biosynthesis induces human CYP17 gene transcription by activating cleavage of sterol regulatory element binding protein 1. Endocrinology 147, 1427–1437 (2006).

Pandol, S.J., Schoeffield-Payne, M.S., Gukovskaya, A.S. & Rutherford, R.E. Sphingosine regulates Ca2+-ATPase and reloading of intracellular Ca2+ stores in the pancreatic acinar cell. Biochim. Biophys. Acta 1195, 45–50 (1994).

Walter, M., Chen, F.W., Tamari, F., Wang, R. & Ioannou, Y.A. Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol. Cell published online, doi:10.1042/BC20070171 (6 August 2008).

Garaschuk, O., Yaari, Y. & Konnerth, A. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J. Physiol. (Lond.) 502, 13–30 (1997).

Deisz, R.A., Meske, V., Treiber-Held, S., Albert, F. & Ohm, T.G. Pathological cholesterol metabolism fails to modify electrophysiological properties of afflicted neurones in Niemann-Pick disease type C. Neuroscience 130, 867–873 (2005).

Lemons, R.M. & Thoene, J.G. Mediated calcium transport by isolated human fibroblast lysosomes. J. Biol. Chem. 266, 14378–14382 (1991).

Srinivas, S.P., Ong, A., Goon, L., Goon, L. & Bonanno, J.A. Lysosomal Ca2+ stores in bovine corneal endothelium. Invest. Ophthalmol. Vis. Sci. 43, 2341–2350 (2002).

Masson, M., Spezzatti, B., Chapman, J., Battisti, C. & Baumann, N. Calmodulin antagonists chlorpromazine and W-7 inhibit exogenous cholesterol esterification and sphingomyelinase activity in human skin fibroblast cultures. Similarities between drug-induced and Niemann-Pick type C lipidoses. J. Neurosci. Res. 31, 84–88 (1992).

Mayran, N., Parton, R.G. & Gruenberg, J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J. 22, 3242–3253 (2003).

Ayala-Sanmartin, J., Henry, J.P. & Pradel, L.A. Cholesterol regulates membrane binding and aggregation by annexin 2 at submicromolar Ca2+ concentration. Biochim. Biophys. Acta 1510, 18–28 (2001).

Wu, Y.P., Mizugishi, K., Bektas, M., Sandhoff, R. & Proia, R.L. Sphingosine kinase 1/S1P receptor signaling axis controls glial proliferation in mice with Sandhoff disease. Hum. Mol. Genet. 17, 2257–2264 (2008).

Yamamoto, T. et al. Genotype-phenotype relationship of Niemann-Pick disease type C: a possible correlation between clinical onset and levels of NPC1 protein in isolated skin fibroblasts. J. Med. Genet. 37, 707–712 (2000).

Pelled, D., Sperling, O. & Zoref-Shani, E. Abnormal purine and pyrimidine nucleotide content in primary astroglia cultures from hypoxanthine-guanine phosphoribosyltransferase–deficient transgenic mice. J. Neurochem. 72, 1139–1145 (1999).

Rakovic, S. et al. An antagonist of cADP-ribose inhibits arrhythmogenic oscillations of intracellular Ca2+ in heart cells. J. Biol. Chem. 274, 17820–17827 (1999).

He, X., Dagan, A., Gatt, S. & Schuchman, E.H. Simultaneous quantitative analysis of ceramide and sphingosine in mouse blood by naphthalene-2,3-dicarboxyaldehyde derivatization after hydrolysis with ceramidase. Anal. Biochem. 340, 113–122 (2005).

Neville, D.C. et al. Analysis of fluorescently labeled glycosphingolipid-derived oligosaccharides following ceramide glycanase digestion and anthranilic acid labeling. Anal. Biochem. 331, 275–282 (2004).

Yamaji, A. et al. Lysenin, a novel sphingomyelin-specific binding protein. J. Biol. Chem. 273, 5300–5306 (1998).

Biwersi, J., Emans, N. & Verkman, A.S. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc. Natl. Acad. Sci. USA 93, 12484–12489 (1996).

Elliot-Smith, E. et al. Beneficial effects of substrate reduction therapy in a mouse model of GM1 gangliosidosis. Mol. Genet. Metab. 94, 204–211 (2008).