Nicotinic α7 receptors: Synaptic options and downstream signaling in neurons

Wiley - Tập 53 Số 4 - Trang 512-523 - 2002
Darwin K. Berg1, William G. Conroy2
1Neurobiology Section, 9500 Gilman Drive, University of California-San Diego, La Jolla, California 92093-0357, USA.
2Neurobiology Section, Biology Division, 9500 Gilman Drive, University of California–San Diego, La Jolla, California 92093‐0357

Tóm tắt

Abstract

Nicotinic receptors are cation‐ion selective ligand‐gated ion channels that are expressed throughout the nervous system. Most have significant calcium permeabilities, enabling them to regulate calcium‐dependent events. One of the most abundant is a species composed of the α7 gene product and having a relative calcium permeability equivalent to that of NMDA receptors. The α7‐containing receptors can be found presynaptically where they modulate transmitter release, and postsynaptically where they generate excitatory responses. They can also be found in perisynaptic locations where they modulate other inputs to the neuron and can activate a variety of downstream signaling pathways. The effects the receptors produce depend critically on the sites at which they are clustered. Instructive preparations for examining α7‐containing receptors are the rat hippocampus, where they are thought to play a modulatory role, and the chick ciliary ganglion, where they participate in throughput transmission as well as regulatory signaling. Relatively high levels of α7‐containing receptors are found in the two preparations, and the receptors display a variety of synaptic options and functions in the two cases. Progress is starting to be made in understanding the mechanisms responsible for localizing the receptors at specific sites and in identifying components tethered in the vicinity of the receptors that may facilitate signal transduction and downstream signaling. © 2002 Wiley Periodicals, Inc. J Neurobiol 53: 512–523, 2002

Từ khóa


Tài liệu tham khảo

Alberini CM, 1999, Genes to remember, J Exp Biol, 202, 2887, 10.1242/jeb.202.21.2887

Alkondon M, 1993, Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes, J Pharmacol Exp Ther, 265, 1455

10.1016/S0006-8993(98)00880-4

Alkondon M, 1997, Neuronal nicotinic acetylcholine receptor activation modulates γ‐aminobutyric acid release from CA1 neurons of rat hippocampal slices, J Pharmacol Exp Ther, 283, 1396

10.1111/j.1460-9568.1997.tb01702.x

Arroyo‐Jimenez Md M, 1999, Ultrastructural localization of the α4‐subunit of the neuronal acetylcholine nicotinic receptor in the rat substantia nigra, J Neurosci, 19, 6475, 10.1523/JNEUROSCI.19-15-06475.1999

10.1073/pnas.90.15.6971

10.1016/S0959-4388(97)80072-4

10.1523/JNEUROSCI.21-02-00504.2001

10.1016/S0959-4388(99)80014-2

Burns AL, 1997, Chick ciliary ganglion neurons contain transcripts coding for acetylcholine receptor‐associated protein at synapses (rapsyn), J Neurosci, 17, 5016, 10.1523/JNEUROSCI.17-13-05016.1997

10.1038/8123

10.1113/jphysiol.1980.sp013177

10.1016/S0896-6273(01)00516-5

10.1074/jbc.272.38.24024

Chen L, 2001, Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms, Nature, 408, 936, 10.1038/35050030

Coggan JS, 1997, Direct recording of nicotinic responses in presynaptic nerve terminals, J Neurosci, 17, 5798, 10.1523/JNEUROSCI.17-15-05798.1997

Conroy WG, 1998, Nicotinic receptor subtypes in the developing chick brain: appearance of a species containing the α4, β2, and α5 gene products, Mol Pharmacol, 53, 392, 10.1124/mol.53.3.392

10.1046/j.1471-4159.1999.0731399.x

10.1016/0896-6273(90)90344-F

10.1523/JNEUROSCI.18-24-10335.1998

10.1111/j.1469-7793.2000.t01-1-00735.x

10.1016/S0092-8674(00)00197-5

10.1016/S0092-8674(00)81251-9

10.1016/S0896-6273(00)80026-4

10.1016/S0928-4257(98)80013-2

10.1016/S0301-0082(97)00050-6

10.1126/science.1063395

10.1152/jn.2002.87.6.3117

10.1523/JNEUROSCI.20-01-00133.2000

10.1016/0301-0082(94)90003-5

10.1113/jphysiol.1954.sp005226

10.1523/JNEUROSCI.21-20-07993.2001

Feng G, 1998, Rapsyn clusters neuronal acetylcholine receptors but is inessential for formation of an interneuronal cholinergic synapse, J Neurosci, 18, 4166, 10.1523/JNEUROSCI.18-11-04166.1998

10.1002/(SICI)1097-4695(199810)37:1<171::AID-NEU13>3.0.CO;2-H

Frazier CJ, 1998, Synaptic potentials mediated via α‐bungarotoxin‐sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons, J Neurosci, 18, 8228, 10.1523/JNEUROSCI.18-20-08228.1998

10.1038/385533a0

10.1002/cne.902390210

10.1038/377232a0

10.1002/neu.480250309

10.1002/neu.1053

10.1038/322419a0

10.3109/10799899409101508

10.1038/383713a0

Greenberg ME, 2001, Synapses, 357

10.1126/science.3749894

10.1046/j.1471-4159.2000.0751997.x

10.1093/emboj/21.5.1012

10.1016/S0896-6273(02)00638-4

10.1038/85109

10.1038/nn835

10.1126/science.287.5461.2262

10.1111/j.1469-7793.1999.769ab.x

Hu M, Nicotinic regulation of CREB activation in hippocampal neurons by glutamatergic and non‐glutamatergic pathways, MCN

Huh K, 2001, Isolation of PICK1 as a binding substrate for α7 nicotinic receptors, Soc Neurosci Abstr, 31, 145

10.1385/MN:25:1:079

10.1093/emboj/17.8.2285

10.1523/JNEUROSCI.03-02-00260.1983

10.1073/pnas.81.10.3223

10.1074/jbc.M011549200

10.1016/S0166-2236(99)01471-X

10.1124/mol.58.2.312

10.1523/JNEUROSCI.22-10-03969.2002

Kawai H, 2002, Nicotinic α7 receptor clusters on hippocampal GABAergic neurons: regulation by synaptic activity and neurotrophins, J Neurosci, 22, 7903, 10.1523/JNEUROSCI.22-18-07903.2002

10.1113/jphysiol.2001.013847

10.1074/jbc.M008035200

10.1126/science.7569905

10.1523/JNEUROSCI.19-04-01165.1999

10.1523/JNEUROSCI.13-02-00674.1993

Lein ES, 2000, Rapid regulation of brain‐derived neurotrophic factor mRNA within eye‐specific circuits during ocular dominance column formation, J Neurosci, 20, 1470, 10.1523/JNEUROSCI.20-04-01470.2000

Lena C, 1993, Evidence for “preterminal” nicotinic receptors on GABAergic axons in the rat interpeduncular nucleus, J Neurosci, 13, 2680, 10.1523/JNEUROSCI.13-06-02680.1993

Levy RB, 2002, α7 Nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor‐positive and ‐negative excitatory synapses in rat sensory cortex, J Neurosci, 22, 5001, 10.1523/JNEUROSCI.22-12-05001.2002

Lindstrom J, 1996, 377

10.1523/JNEUROSCI.19-23-10280.1999

Loring RH, 1987, Ultrastructural distribution of 125I‐toxin F binding sites on chick ciliary neurons: synaptic localization of a toxin that blocks ganglionic nicotinic receptors, J Neurosci, 7, 2153, 10.1523/JNEUROSCI.07-07-02153.1987

10.1016/0306-4522(85)90316-1

10.1016/S0896-6273(00)81119-8

10.1111/j.1469-7793.2001.00089.x

10.1126/science.7569895

10.1002/cne.902170109

10.1016/0306-4522(94)90187-2

Mermelstein PG, 2000, Critical dependence of cAMP response element‐binding protein phosphorylation of L‐type calcium channels supports a selective response to EPSPs in preference to action potentials, J Neurosci, 20, 266, 10.1523/JNEUROSCI.20-01-00266.2000

10.1074/jbc.M007024200

10.1074/jbc.274.29.20529

Mohamed AS, 2001, Src‐class kinases act within the agrin/MuSK pathway to regulate acetylcholine receptor phosphorylation, cytoskeletal anchoring, and clustering, J Neurosci, 21, 3806, 10.1523/JNEUROSCI.21-11-03806.2001

10.1016/S0896-6273(00)80983-6

10.1126/science.8066450

10.1523/JNEUROSCI.16-07-02157.1996

10.1016/S0896-6273(00)80517-6

10.1016/S0896-6273(00)80782-5

10.1523/JNEUROSCI.22-11-04487.2002

10.1016/S0896-6273(00)80518-8

10.1016/0304-3940(96)12889-5

10.1523/JNEUROSCI.15-03-01854.1995

Rajadhyaksha A, 1999, L‐Type Ca2+ channels are essential for glutamate‐mediated CREB phosphorylation and c‐fos gene expression in striatal neurons, J Neurosci, 19, 6348, 10.1523/JNEUROSCI.19-15-06348.1999

10.1523/JNEUROSCI.17-21-08353.1997

10.1016/S0896-6273(00)80134-8

10.1016/0896-6273(93)90197-Y

10.1113/jphysiol.1993.sp019884

10.1523/JNEUROSCI.19-18-08145.1999

10.1146/annurev.ne.16.030193.002155

10.1016/0896-6273(90)90031-A

10.1523/JNEUROSCI.13-02-00596.1993

10.1146/annurev.neuro.24.1.1

10.1523/JNEUROSCI.19-02-00692.1999

Shoop RD, 2001, Synaptically‐driven calcium transients via nicotinic receptors on somatic spines, J Neurosci, 21, 771, 10.1523/JNEUROSCI.21-03-00771.2001

Shoop RD, 2002, Ultrastructure of a somatic spine mat for nicotinic signaling in neurons, J Neurosci, 22, 748, 10.1523/JNEUROSCI.22-03-00748.2002

Shoop RD, 2000, Cytoskeletal links of neuronal acetylcholine receptors containing α7 subunits, J Neurosci, 20, 4021, 10.1523/JNEUROSCI.20-11-04021.2000

10.1016/0896-6273(93)90214-C

10.1083/jcb.153.5.F19

10.1038/72066

10.1016/S0306-4522(01)00172-5

Ullian EM, 1997, Rapid synaptic transmission in the avian CG is mediated by two distinct classes of nicotinic receptors, J Neurosci, 17, 7210, 10.1523/JNEUROSCI.17-19-07210.1997

van Hoek ML, 1997, Phosphotyrosine phosphatase activity associated with c‐Src in large multimeric complexes isolated from adrenal medullary chromaffin cells, Biochem J, 326, 271, 10.1042/bj3260271

10.1016/0896-6273(93)90333-M

10.1523/JNEUROSCI.21-01-00075.2001

Westbrook GL, 1997, Cytoskeletal regulation of membrane function, 163

10.1038/2792

Wilson Horch HL, 1995, Perisynaptic surface distribution of multiple classes of nicotinic acetylcholine receptors on neurons in the chicken ciliary ganglion, J Neurosci, 15, 7778, 10.1523/JNEUROSCI.15-12-07778.1995

10.1016/S0166-2236(96)10073-4

10.1038/385439a0

10.1111/j.1749-6632.1989.tb24100.x

10.1111/j.1469-7793.1998.651bm.x

10.1016/S0306-4522(98)00246-2

10.1007/BF00230441

10.1016/S0896-6273(00)80553-X

10.1016/S0896-6273(00)80253-6

10.1016/0896-6273(94)90161-9

10.1016/S0165-6147(99)01343-7

Zorumski CF, 1992, Nicotinic acetylcholine currents in cultured postnatal rat hippocampal neurons, Mol Pharmacol, 41, 931