NhaA crystal structure: functional–structural insights

Journal of Experimental Biology - Tập 212 Số 11 - Trang 1593-1603 - 2009
Etana Padan1, Lena Kozachkov1, Katia Herz1, Abraham Rimon1
1Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel

Tóm tắt

SUMMARY

Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic membrane and many intracellular membranes. They are essential for Na+, pH and volume homeostasis, which are crucial processes for cell viability. Accordingly, antiporters are important drug targets in humans and underlie salt-resistance in plants. Many Na+/H+ antiporters are tightly regulated by pH. Escherichia coli NhaA Na+/H+ antiporter, a prototype pH-regulated antiporter,exchanges 2 H+ for 1 Na+ (or Li+). The NhaA crystal structure has provided insights into the pH-regulated mechanism of antiporter action and opened up new in silico and in situavenues of research. The monomer is the functional unit of NhaA yet the dimer is essential for the stability of the antiporter under extreme stress conditions. Ionizable residues of NhaA that strongly interact electrostatically are organized in a transmembrane fashion in accordance with the functional organization of the cation-binding site, `pH sensor', the pH transduction pathway and the pH-induced conformational changes. Remarkably,NhaA contains an inverted topology motive of transmembrane segments, which are interrupted by extended mid-membrane chains that have since been found to vary in other ion-transport proteins. This novel structural fold creates a delicately balanced electrostatic environment in the middle of the membrane,which might be essential for ion binding and translocation. Based on the crystal structure of NhaA, a model structure of the human Na+/H+ exchanger (NHE1) was constructed, paving the way to a rational drug design.

Từ khóa


Tài liệu tham khảo

Abramson, J., Smirnova, I., Kasho, V., Verner, G., Kaback, H. R. and Iwata, S. (2003). Structure and mechanism of the lactose permease of Escherichia coli. Science301,610-615.

Apse, M. P. and Blumwald, E. (2007). Na+ transport in plants. FEBS Lett.581,2247-2254.

Arkin, I. T., Xu, H., Jensen, M. O., Arbely, E., Bennett, E. R.,Bowers, K. J., Chow, E., Dror, R. O., Eastwood, M. P. and Flitman-Tene, R.(2007). Mechanism of Na+/H+ antiporting. Science317,799-803.

Battaglino, R. A., Pham, L., Morse, L. R., Vokes, M., Sharma,A., Odgren, P. R., Yang, M., Sasaki, H. and Stashenko, P.(2008). NHA-oc/NHA2: a mitochondrial cation-proton antiporter selectively expressed in osteoclasts. Bone42,180-192.

Baumeister, W. and Steven, A. C. (2000). Macromolecular electron microscopy in the era of structural genomics. Trends Biochem. Sci.25,624-631.

Boudker, O., Ryan, R. M., Yernool, D., Shimamoto, K. and Gouaux,E. (2007). Coupling substrate and ion binding to extracellular gate of a sodium-dependent aspartate transporter. Nature445,387-393.

Brett, C. L., Donowitz, M. and Rao, R. (2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol.288,223-239.

Day, J. p., Wan, S., Allen, A. K., Kean, L., Davies, S. A.,Gray, J. V. and Dow, J. A. T. (2008). Identification of two partners from the bacterial Kef exchanger family for the apical plasma membrane V-ATPase of metazoa. J. Cell Sci.121,2612-2619.

Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. and MacKinnon, R. (2002). X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature415,287-294.

Faham, S., Watanabe, A., Besserer, G. M., Cascio, D., Specht,A., Hirayama, B. A., Wright, E. M. and Abramson, J. (2008). The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science321,810-814.

Fliegel, L. (2008). Molecular biology of the myocardial Na+/H+ exchanger. J. Mol. Cell Cardiol.44,228-237.

Forrest, L. R., Tavoulari, S., Zhang, Y. W., Rudnick, G. and Honig, B. (2007). Identification of a chloride ion binding site in Na+/Cl -dependent transporters. Proc. Natl. Acad. Sci. USA104,12761-12766.

Forrest, L. R., Zhang, Y. W., Jacobs, M. T., Gesmonde, J., Xie,L., Honig, B. H. and Rudnick, G. (2008). Mechanism for alternating access in neurotransmitter transporters. Proc. Natl. Acad. Sci. USA105,10338-10343.

Fuster, D. G., Zhang, J., Shi, M., Bobulescu, I. A., Andersson,S. and Moe, O. W. (2008). Characterization of the sodium/hydrogen exchanger NHA2. J. Am. Soc. Nephrol.19,1547-1556.

Galili, L., Rothman, A., Kozachkov, L., Rimon, A. and Padan,E. (2002). Trans membrane domain IV is involved in ion transport activity and pH regulation of the NhaA-Na+/H+antiporter of Escherichia coli. Biochemistry41,609-617.

Galili, L., Herz, K., Dym, O. and Padan, E.(2004). Unraveling functional and structural interactions between transmembrane domains IV and XI of NhaA Na+/H+antiporter of Escherichia coli. J. Biol. Chem.279,23104-23113.

Gerchman, Y., Rimon, A. and Padan, E. (1999). A pH-dependent conformational change of NhaA Na+/H+antiporter of Escherichia coli involves loop VIII-IX, plays a role in the pH response of the protein, and is maintained by the pure protein in dodecyl maltoside. J. Biol. Chem.274,24617-24624.

Gerchman, Y., Rimon, A., Venturi, M. and Padan, E.(2001). Oligomerization of NhaA, the Na+/H+antiporter of Escherichia coli in the membrane and its functional and structural consequences. Biochemistry40,3403-3412.

Guan, L. and Kaback, H. R. (2006). Lessons from lactose permease. Annu. Rev. Biophys. Biomol. Struct.35, 67-91.

Guan, L. and Kaback, H. R. (2007). Site-directed alkylation of cysteine to test solvent accessibility of membrane proteins. Nat. Protoc.2,2012-2017.

Harvey, W. R. (2009). Voltage coupling of primary H+ V-ATPases to secondary Na+- or K+-dependent transporters. J. Exp. Biol.212,1620-1629.

Herz, K., Vimont, S., Padan, E. and Berche, P.(2003). Roles of NhaA, NhaB, and NhaD Na+/H+ antiporters in survival of Vibrio cholerae in a saline environment. J. Bacteriol.185,1236-1244.

Herz, K., Rimon, A., Jeschke G. and Padan, E.(2009). β-Sheet-dependent dimerization is essential for the stability of NhaA Na+-H+ antiporter. J. Biol. Chem.284,6337-6347.

Hilger, D., Jung, H., Padan, E., Wegener, C., Vogel, K. P.,Steinhoff, H. J. and Jeschke, G. (2005). Assessing oligomerization of membrane proteins by four-pulse DEER: pH-dependent dimerization of NhaA Na+/H+ antiporter of E. coli. Biophys J.89,1328-1338.

Hilger, D., Polyhach, Y., Padan, E., Jung, H. and Jeschke,G. (2007). High-resolution structure of a Na+/H+ antiporter dimer obtained by pulsed EPR distance measurements. Biophys. J.93,3675-3683.

Honig, B. and Nicholls, A. (1995). Classical electrostatics in biology and chemistry. Science268,1144-1149.

Huang, Y., Lemieux, M. J., Song, J., Auer, M. and Wang, D. N. (2003). Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science301,616-620.

Hunte, C., Screpanti, M., Venturi, M., Rimon, A., Padan, E. and Michel, H. (2005). Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature534,1197-1202.

Jencks, W. P. (1980). The utilization of binding energy in coupled vectorial processes. Adv. Enzymol. Relat. Areas Mol. Biol.51,75-106.

Karlin, A. and Akabas, M. H. (1998). Substituted-cysteine accessibility method. Methods Enzymol.293,123-145.

Kozachkov, L., Herz, K. and Padan, E. (2007). Functional and structural interactions of the transmembrane domain X of NhaA,Na+/H+ antiporter of Escherichia coli, at physiological pH. Biochemistry46,2419-2430.

Kuwabara, N., Inoue, H., Tsuboi, Y., Mitsui, K., Matsushita, M. and Kanazawa, H. (2006). Structure-function relationship of the fifth transmembrane domain in the Na+/H+ antiporter of Helicobacter pylori: topology and function of the residues,including two consecutive essential aspartate residues. Biochemistry45,14834-14842.

Landau, M., Herz, K., Padan, E. and Ben-Tal, N.(2007). Model structure of the Na+/H+exchanger 1 (NHE1): functional and clinical implications. J. Biol. Chem.282,37854-37863.

Malo, M. E. and Fliegel, L. (2006). Physiological role and regulation of the Na+/H+exchanger. Can. J. Physiol. Pharmacol.84,1081-1095.

Maresova, L. and Sychrova, H. (2006). Arabidopsis thaliana CHX17 gene complements the kha! deletion phenotypes in Sacharomyces cerevisiae. Yeast23,1167-1171.

Maris, A. E., Walthers, D., Mattison, K., Byers, N. and Kenney,L. J. (2005). The response regulator OmpR oligomerizes via beta-sheets to form head-to-head dimers. J. Mol. Biol.350,843-856.

Meier, T., Polzer, P., Diederichs, K., Welte, W. and Dimroth,P. (2005). Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus. Science308,659-662.

Mitchell, P. and Moyle, J. (1965). Stoichiometry of proton translocation through the respiratory chain and adenosine triphospatase system of rat liver mitochondria. Nature208,147-151.

Morth, J. P., Pedersen, B. P., Toustrup-Jensen, M. S., Sorensen,T. L., Petersen, J., Andersen, J. P., Vilsen, B. and Nissen, P.(2007). Crystal structure of the sodium-potassium pump. Nature450,1043-1049.

Murakami, S., Nakashima, R., Yamashita, E., Matsumoto, T. and Yamaguchi, A. (2006). Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature443,173-179.

Murata, T., Arechaga, I., Fearnley, I. M., Kakinuma, Y., Yamato,I. and Walker, J. E. (2003). The membrane domain of the Na+-motive V-ATPase from Enterococcus hirae contains a heptameric rotor. J. Biol. Chem.278,21162-21167.

Nie, Y., Ermolova, N. and Kaback, H. R. (2007). Site-directed alkylation of LacY: effect of the proton electrochemical gradient. J. Mol. Biol.374,356-364.

Okech, B. A., Boudko, D. Y., Linser, P. J. and R. H. W.(2008). Cationic pathway of pH regulation in larvae of Anopheles gambiae. J. Exp. Biol.211,957-968.

Olami, Y., Rimon, A., Gerchman, Y., Rothman, A. and Padan,E. (1997). Histidine 225, a residue of the NhaA-Na+/H+ antiporter of Escherichia coli is exposed and faces the cell exterior. J. Biol. Chem.272,1761-1768.

Olesen, C., Picard, M., Winther, A. M., Gyrup, C., Morth, J. P.,Oxvig, C., Moller, J. V. and Nissen, P. (2007). The structural basis of calcium transport by the calcium pump. Nature450,1036-1042.

Olkhova, E., Hunte, C., Screpanti, E., Padan, E. and Michel,H. (2006). Multiconformation continuum electrostatics analysis of the NhaA Na+/H+ antiporter of Escherichia coli with functional implications. Proc. Natl. Acad. Sci. USA103,2629-2634.

Olkhova, E., Padan, E. and Michel, H. (2007). The influence of protonation states on the dynamics of the NhaA antiporter from Escherichia coli. Biophysics J.92,3784-3791.

Olkhova, E., Kozachkov, L., Padan E. and Michel, H.(2009). Combined computational and biochemical study reveals the importance of electrostatic interactions between the `pH sensor' and the cation binding site of the sodium/proton antiporter NhaA of Escherichia coli. Proteins (in press).

Orlowski, J. and Grinstein, S. (2004). Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch.447,549-565.

Orlowski, J. and Grinstein, S. (2007). Emerging roles of alkali cation/proton exchangers in organellar homeostasis. Curr. Opin. Cell Biol.19,483-492.

Padan, E. (2008). The enlightening encounter between structure and function in the NhaA-Na+/H+antiporter. Trends Biochem. Sci.33,435-443.

Padan, E., Zilberstein, D. and Rottenberg, H.(1976). The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem.63,533-541.

Padan, E., Venturi, M., Michel, H. and Hunte, C.(1998). Production and characterization of monoclonal antibodies directed against native epitopes of NhaA, the Na+/H+antiporter of Escherichia coli. FEBS Lett.441, 53-58.

Padan, E., Venturi, M., Gerchman, Y. and Dover, N.(2001). Na+/H+ antiporters. Biochim. Biophys. Acta1505,144-157.

Padan, E., Tzubery, T., Herz, K., Kozachkov, L., Rimon, A. and Galili, L. (2004). NhaA of Escherichia coli, as a model of a pH-regulated Na+/H+ antiporter. Biochim. Biophys. Acta1658, 2-13.

Padan, E., Bibi, E., Masahiro, I. and Krulwich, T. A.(2005). Alkaline pH homeostasis in bacteria: new insights. Biochim. Biophys. Acta1717,67-88.

Pebay-Peyroula, E., Dahout-Gonzalez, C., Kahn, R., Trezeguet,V., Lauquin, G. J. and Brandolin, G. (2003). Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature426,39-44.

Pedersen, B. P., Buch-Pedersen, M. J., Morth, J. P., Palmgren,M. G. and Nissen, P. (2007). Crystal structure of the plasma membrane proton pump. Nature450,1111-1114.

Pham, L., Purcell, p., Morse, L. R., Stashenko, P. and Battaglino, R. A. (2007). Expression analysis of nha-oc/NHA2:A novel gene selectively expressed in osteoclasts. Gene Expr. Patterns7,846-851.

Rheault, M. R., Okech, B. A., Keen, S. B. W., Miller, M. M. and Harvey, W. R. (2007). Molecular cloning, physiology and localization of AgNHA1: the first Na+/H+ antiporter(NHA) from a metazoan, Anopheles gambiae. J. Exb. Biol.210,3848-3861.

Rimon, A., Gerchman, Y., Kariv, Z. and Padan, E.(1998). A point mutation (G338S) and its suppressor mutations affect both the pH response of the NhaA-Na+/H+antiporter as well as the growth phenotype of Escherichia coli. J. Biol. Chem.273,26470-26476.

Rimon, A., Tzubery, T., Galili, L. and Padan, E.(2002). Proximity of cytoplasmic and periplasmic loops in NhaA Na+/H+ antiporter of Escherichia coli as determined by site-directed thiol cross-linking. Biochemistry41,14897-14905.

Rimon, A., Tzubery, T. and Padan, E. (2007). Monomers of NhaA Na+/H+ antiporter of Escherichia coli are fully functional yet dimers are beneficial under extreme stress conditions at alkaline pH in the presence of Na+ or Li+. J. Biol. Chem.282,26810-26821.

Rimon, A., Hunte, C., Michel, H. and Padan, E.(2008). Epitope mapping of conformational monoclonal antibodies specific to NhaA Na+/H+ antiporter: structural and functional implications. J. Mol. Biol.379,471-481.

Screpanti, E. and Hunte, C. (2007). Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol.159,261-267.

Screpanti, E., Padan, E., Rimon, A., Michel, H. and Hunte,C. (2006). Crucial steps in the structure determination of the Na+/H+ antiporter NhaA in its native conformation. J. Mol. Biol.362,192-202.

Slepkov, E. R., Rainey, J. K., Sykes, B. D. and Fliegel, L.(2007). Structural and functional analysis of the Na+/H+ exchanger. Biochem J.401,623-633.

Taglicht, D., Padan, E. and Schuldiner, S.(1991). Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant)from Escherichia coli. J. Biol. Chem.266,11289-11294.

Taglicht, D., Padan, E. and Schuldiner, S.(1993). Proton-sodium stoichiometry of NhaA, an electrogenic antiporter from Escherichia coli. J. Biol. Chem.268,5382-5387.

Takahashi, M., Kondou, Y. and Toyoshima, C.(2007). Interdomain communication in calcium pump as revealed in the crystal structures with transmembrane inhibitors. Proc. Natl. Acad. Sci. USA104,5800-5805.

Tamura, N., Konishi, S., Iwaki, S., Kimura-Someya, T., Nada, S. and Yamaguchi, A. (2001). Complete cysteine-scanning mutagenesis and site-directed chemical modification of the Tn10-encoded metal-tetracycline/H+ antiporter. J. Biol. Chem.276,20330-20339.

Toyoshima, C., Nakasako, M., Nomura, H. and Ogawa, H.(2000). Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature405,647-655.

Tzubery, T. (2008). The relationship between structure, pH sensing and pH regulation of NhaA-Na+/H+antiporter of Escherichia coli In Institute of Life Sciences, pp. 118. PhD thesis, Hebrew University, Jerusalem.

Tzubery, T., Rimon, A. and Padan, E. (2003). Mutation E252C increases drastically the Km value for Na+ and causes an alkaline shift of the pH dependence of NhaA Na+/H+ antiporter of Escherichia coli. J. Biol. Chem.279,3265-3272.

Tzubery, T., Rimon, A. and Padan, E. (2008). Structure-based functional study reveals multiple roles of TMS IX and loop VIII-IX in NhaA Na+/H+ antiporter of Escherichia coli at physiological pH. J. Biol. Chem.283,15975-15987.

Veenhoff, L. M., Heuberger, E. H. and Poolman, B.(2002). Quaternary structure and function of transport proteins. Trends Biochem. Sci.27,242-249.

Venturi, M. and Padan, E. (2002). Purification of NhaA Na+/H+ antiporter of Escherichia colifor 3D and 2D crystallization. In A Practical Guide to Membrane Protein Purification (ed. C. Hunte, G. Von Jagow and H. Schagger), pp. 179-190. Amsterdam:Elsevier.

Venturi, M., Rimon, A., Gerchman, Y., Hunte, C., Padan, E. and Michel, H. (2000). The monoclonal antibody 1F6 identifies a pH-dependent conformational change in the hydrophilic NH2 terminus of NhaA Na+/H+ antiporter of Escherichia coli. J. Biol. Chem.275,4734-4742.

Wakabayashi, S., Pang, T., Su, X. and Shigekawa, M.(2000). A novel topology model of the human Na(+)/H(+) exchanger isoform 1. J. Biol. Chem.275,7942-7949.

Wakabayashi, S., Pang, T., Hisamitsu, T. and Shigekawa, M.(2003). The sodium-Hydrogen Exchange, from Molecule to its Role in Disease. Boston, MA: Kluwer.

Wieczorek, H., Beyenbach, K. W., Huss, M. and Vitavska, O.(2009). Vacuolar-type proton pumps in insect epithelia. J. Exp. Biol.212,1611-1619.

West, I. C. and Mitchell, P. (1974). Proton/sodium ion antiport in Escherichia coli. Biochem. J.144,87-90.

Williams, K. A. (2000). Three-dimensional structure of the ion-coupled transport protein NhaA. Nature403,112-115.

Williams, K. A., Geldmacher-Kaufer, U., Padan, E., Schuldiner,S. and Kuhlbrandt, W. (1999). Projection structure of NhaA, a secondary transporter from Escherichia coli, at 4.0 Åresolution. EMBO J.18,3558-3563.

Xiang, M., Feng, M., Muend, S. and Rao, R.(2007). A human Na+/H+ antiporter sharing evolutionary origins with bacterial NhaA may be a candidate gene for essential hypertension. Proc. Natl. Acad. Sci. USA104,18677-18681.

Yamaguchi, T. and Blumwald, E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci.10,615-620.

Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. and Gouaux,E. (2005). Crystal structure of a bacterial homologue of Na+/Cl–-dependent neurotransmitter transporters. Nature437,215-223.

Yernool, D., Boudker, O., Jin, Y. and Gouaux, E.(2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature431,811-818.

Zhou, Y., Guan, L., Freltes, J. and Kaback, H.(2008). Opening and closing of the periplasmic gate in lactose permease. Proc. Natl. Acad. Sci. USA105,3774-3778.

Zomot, E., Bendahan, A., Quick, M., Zhao, Y., Javitch, J. A. and Kanner, B. I. (2007). Mechanism of chloride interaction with neurotransmitter:v sodium symporters. Nature449,726-730.