New targets for an old drug
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arlington, S.A. (2001). Industrialization of R&D in the 21st Century. Pricewaters Coopers, ECPI, Barcelona, Spain.
Banik, G.M. (2004, May). In silico ADME-Tox prediction: The more the merrier. Current Drug Discovery, pp. 31–34.
CHI. (2002, May). CHI's Third Annual Conference on Pharmacogenomics/Pharmacoproteomics Europe. Munich, Germany.
Leung, D., Hardouin, C., Boger, D.L., and Cravatt, B.F. (2003). Discovering potent and selective reversible inhibitors of enzymes in complex proteomes. Nat. Biotechnol. 21: 687–691.
Kim, E. and Park, J. M. (2003). Identification of novel target proteins of cyclic GMP signaling pathways using chemical proteomics. J. Biochem. Mol. Biol. 36:299–304.
Graves, P.R., Kwiek, J.J., Fadden, P., Ray, R., Hardeman, K., Coley, A.M., et al. (2002). Discovery of novel targets of quinoline drugs in the human purine binding proteome. Mol. Pharmacol. 62:1364–1372.
Weber, G. and Prajda, N. (1994). Targeted and non-targeted actions of anti-cancer drugs. Adv. Enzyme Regul. 34:71–89.
Allison, A.C. (2000). Immunosuppressive drugs: the first 50 years and a glance forward. Immunopharmacology 47:63–83.
Saravanan, V. and Hamilton, J. (2002). Advances in the treatment of rheumatoid arthritis: old versus new therapies. Expert Opin. Pharmacother. 3:845–856.
Fairbanks, L.D., Ruckemann, K., Qiu, Y., Hawrylowicz, C.M., Richards, D.F., Swaminathan, R., et al. (1999). Methotrexate inhibits the first committed step of purine biosynthesis in mitogen-stimulated human T-lymphocytes: a metabolic basis for efficacy in rheumatoid arthritis? Biochem. J. 342(Pt. 1):143–152.
Cronstein, B.N. (1997). The mechanism of action of methotrexate. Rheum. Dis. Clin. North Am. 23:739–755.
Costi, M.P. and Ferrari, S. (2001). Update on antifolate drugs targets. Curr. Drug Targets 2:135–166.
Allegra, C.J., Drake, J.C., Jolivet, J., and Chabner, B.A. (1985). Inhibition of phosphoribosylaminoimidazolecarboxamide transformylase by methotrexate and dihydrofolic acid polyglutamates. Proc. Natl. Acad. Sci. USA 82:4881–4885.
Mauritz, R., Peters, G.J., Priest, D.G., Assaraf, Y.G., Drori, S., Kathmann, I., et al. (2002). Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis. Biochem. Pharmacol. 63:105–115.
Toledo-Sherman, L.M., Desouza, L., Hosfield, C., Liao, L., Boutellier, K., Taylor, P., et al. (2004). New targets for an old drug: a chemical proteomics approach to unraveling the molecular mechanism of action of methotrexate. Clin. Proteomics 1:45–68.
Jones, G., Willett, P., Glen, R.C., Leach, A.R., and Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267:727–748.
Chen, Y.Z. and Zhi, D.G. (2001). Ligand-protein inverse docking and its potential use in the computer search of protein targets of a small molecule. Proteins 43:217–226.
Chan, N.W.C., Lewis, D.F., Hewko, S., Hindsgaul, O., and Schriemer, D.C. (2002). Frontal affinity chromatography for the screening of mixtures. Comb. Chem. High Throughput Screen. 5:395–406.
Weber, G., Nagai, M., Natsumeda, Y., Ichikawa, S., Nakamura, H., Eble, J.N., et al. (1991). Regulation of de novo and salvage pathways in chemotherapy. Adv. Enzyme Regul. 31:45–67.
Balendiran, G.K., Molina, J.A., Xu, Y., Torres-Martinez, J., Stevens, R., Focia, P.J., et al. (1999). Ternary complex structure of human HGPRTase, PRPP, Mg2+, and the inhibitor HPP reveals the involvement of the flexible loop in substrate binding. Protein Sci. 8:1023–1031.
Schoettle, S.L. and Christopherson, R.I. (1994). Inhibition of murine amido phosphoribosyl-transferase by folate derivatives. Adv. Exp. Med. Biol. 370:151–154.
Jones, R.J. and Twelves, C.J. (2002). Pemetrexed: a multitargeted antifolate (ALIMTA, LY-231514). Expert Rev. Anticancer Ther. 2:13–22.
Aherne, G.W., Hardcastle, A., Ward, E., Dobinson, D., Crompton, T., Valenti, M., et al. (2001). Pharmacokinetic/pharmacodynamic study of ZD9331, a nonpolyglutamatable inhibitor of thymidylate synthase, in a murine model following two curative administration schedules. Clin. Cancer Res. 7:2923–2930.
Romain, S., Martin, P.M., Klijn, J.G., van Putten, W.L., Look, M.P., Guirou, O., et al. (1997). DNA-synthesis enzyme activity: a biological tool useful for predicting antimetabolic drug sensitivity in breast cancer? Int. J. Cancer 74:156–161.
Weber, G. and Prajda, N. (1994). Targeted and non-targeted actions of anti-cancer drugs. Adv. Enzyme Regul. 34:71–89.
Gordon, R.B., Keough, D.T., and Emmerson, B.T. (1987). HPRT-deficiency associated with normal PRPP concentration and APRT activity. J. Inherit. Metab. Dis. 10:82–88.
Fung, K.P., Lam, W.P., Choy, Y.M., and Lee, C.Y. (1996). Effect of methotrexate on the intracellular phosphoribosyl pyrophosphate level and glucose transport of Ehrlich ascites tumor cells in vitro. Oncology 53:27–30.