New parametric generalized exponential fuzzy divergence measure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Shannon CE: A mathematical theory of communication. Bell. Syst. Tech. J. 1948, 27(3):379–423. Accessed on September 19, 2014http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf 10.1002/j.1538-7305.1948.tb01338.x
Kapur JN: Measures of Fuzzy Information. Mathematical Sciences Trust Society, New Delhi; 1997.
De Luca A, Termini S: A definition of non-probabilistic entropy in the setting of fuzzy set theory. Inf. Control. 1972, 20(4):301–312. 10.1016/S0019-9958(72)90199-4
Bhandari D, Pal NR: Some new information measures for fuzzy sets. Inf. Sci. 1993, 67(3):209–228. 10.1016/0020-0255(93)90073-U
Pal NR, Pal SK: Object background segmentation using new definition of entropy. IEEE Proc. 1989, 136(4):284–295.
Verma R, Sharma BD: On generalized exponential fuzzy entropy. World Acad. Sci. Eng. Technol. 2011, 60: 1402–1405. Accessed on September 5, 2014http://waset.org/publications/9417/on-generalized-exponential-fuzzy-entropy
Kullback S, Leibler RA: On information and sufficiency. Ann. Math. Stat. 1951, 22(1):79–86. Accessed on September 22, 2014http://www.csee.wvu.edu/~xinl/library/papers/math/statistics/Kullback_Leibler_1951.pdf 10.1214/aoms/1177729694
Fan J, Xie W: Distance measures and induced fuzzy entropy. Fuzzy Sets Syst. 1999, 104(2):305–314. 10.1016/S0165-0114(99)80011-6
Ghosh M, Das D, Ray C, Chakraborty AK: Automated leukocyte recognition using fuzzy divergence. Micron 2010, 41: 840–846. 10.1016/j.micron.2010.04.017
Montes S, Couso I, Gil P, Bertoluzza C: Divergence measure between fuzzy sets. Int. J. Approx. Reason. 2002, 30: 91–105. 10.1016/S0888-613X(02)00063-4
Prakash O, Sharma PK, Kumar S: Two new measures of fuzzy divergence and their properties. SQU J. Sci. 2006, 11: 69–77. Accessed on September 10, 2014http://web.squ.edu.om/squjs/volum11/MATH041130-corrected.pdf
Ferreri C: Hyper entropy and related heterogeneity divergence and information measures. Statistica 1980, 40(2):155–168.
Renyi A: On measures of entropy and information. Proc. 4th Berkeley Symp. Math. Stat. Probab. 1961, 1: 547–561.
Sharma BD, Mittal DP: New non-additive measures of entropy for discrete probability distributions. J. Math. Sci (Calcutta). 1975, 10: 28–40.
Bajaj RK, Hooda DS: On some new generalized measures of fuzzy information. World Acad. Sci. Eng. Technol. 2010, 62: 747–753.
Bhatia PK, Singh S: Three families of generalized fuzzy directed divergence. AMO 2012, 14(3):599–614.
Taneja IJ: On Mean Divergence Measures. 2005.
Zadeh LA: Probability measures of fuzzy events. J. Math. Anal. Appl. 1968, 23: 421–427. 10.1016/0022-247X(68)90078-4
Bouchon-Meunier B, Rifqi M, Bothorel S: Towards general measures of comparison of objects. Fuzzy Sets Syst. 1996, 84: 143–153. 10.1016/0165-0114(96)00067-X
Bhandari D, Pal NR, Majumder DD: Fuzzy divergence, probability measure of fuzzy events and image thresholding. Inf. Sci. 1992, 13: 857–867.
Havrda JH, Charvat F: Quantification methods of classification processes: concepts of structural a entropy. Kybernetika 1967, 3: 30–35.
Poletti E, Zappelli F, Ruggeri A, Grisan E: A review of thresholding strategies applied to human chromosome segmentation. Comput. Methods Prog. Biomed. 2012, 108: 679–688. 10.1016/j.cmpb.2011.12.003
Fan S, Yang S, He P, Nie H: Infrared electric image thresholding using two dimensional fuzzy entropy. Energey Procedia 2011, 12: 411–419. 10.1016/j.egypro.2011.10.055
Bhatia PK, Singh S: A new measure of fuzzy directed divergence and its application in image segmentation. Int. J. Intell. Sys. Appl. 2013, 4: 81–89. Accessed on September 12, 2014.http://www.mecs-press.org/ijisa/ijisa-v5-n4/IJISA-V5-N4–8.pdf
Hwang CL, Yoon K: Multiple Attribute Decision Making: Methods and Applications. Springer, New York; 1981.
Brauers WKM, Zavadskas EK: The MOORA method and its application to privatization in transition economy. Control. Cybern. 2006, 35(2):443–468.